


Highlights of 2009 AESC Report

Briefing to Vermont Public Service Board November 3, 2009

AGENDA

- Introduction and General Approach
- Avoided Costs of Electricity (Capacity, Energy, RPS compliance; Demand Reduction Induced Price effect, C02 Externalities)
- Avoided Costs of Natural Gas (production; transmission, storage and peaking; distribution)
- Avoided Costs of other fuels

Avoided Cost of Electricity - Components

Avoided energy = (wholesale electric energy price + REC cost (except VT)) adjusted for wholesale risk premium. This is the largest component. Annual values about 5% lower than AESC 2007 due to lower load and more renewable generation

Avoided capacity = revenue from sale into Forward Capacity Market (FCM) **OR** value of reducing quantity of capacity bought from FCM. Values are about 70% lower than AESC 2007 due to better understand of FCM operation, lower load and capacity from renewable resources

Energy DRIPE = impact of kWh reductions on energy market prices. Values are approximately double AESC 2007, primarily due to longer dissipation, i.e. longer time for market to respond.

Capacity DRIPE = Impact of kW reductions on FCM prices. Values are slightly lower than AESC 2007.

Avoided CO₂ environmental externalities = cost of controlling CO₂ that is not reflected in wholesale energy market prices. Values are approximately 10% lower than AESC 2007 due to more efficient generating units on the margin.

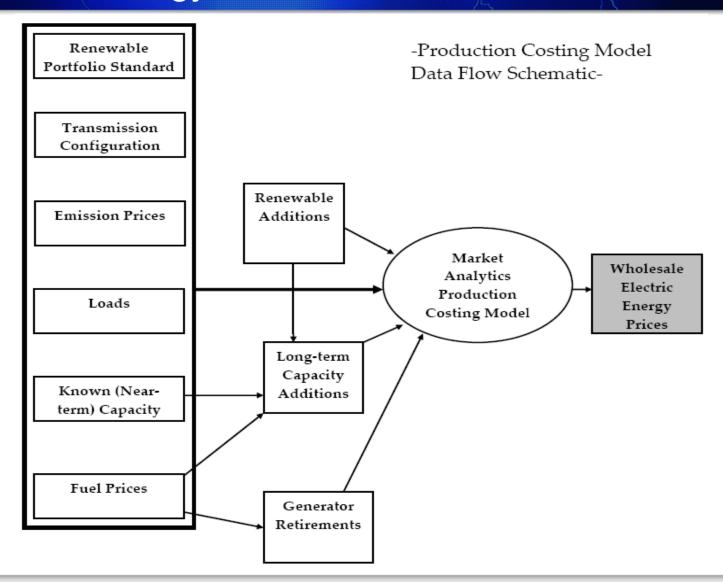
Avoided local T&D infrastructure. These costs are calculated by Program Administrators

Background AESC 2009 Results (cents/kwh) – Boston zone

Summer 2009 prices for retail electricity supply to residential customers in Northeast Massachusetts zone (NEMA) range from 9.2 cents/kwh to 9.7 cents/kwh (\$2009\$)

	AESC 2007	AESC 2009	Difference to AESC	
Component	(cents/kWh)	(cents/kWh)	(cents/kWh)	%
Avoided Energy Costs	10.5	9.6	-0.9	-9%
Avoided Capacity Costs ^a	2.3	0.4	-1.9	-84%
DRIPE	100			
Energy ^b	1.7	4.3	2.6	156%
Capacity ^c	0.4	0.3	0.2	-39%
CO ₂ Externality	3.2	2.9	-0.3	-10%
TOTAL	18.1	17.5	-0.7	-4%

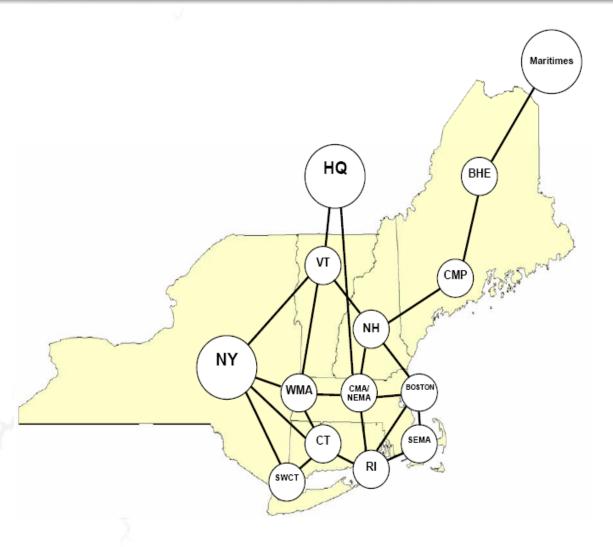
- a) Avoiding costs from purchasing from the Forward Capacity Market
- b) Values are for total DRIPE (Intrastate and Rest of Pool)
- c) Assuming a 55% load factor.

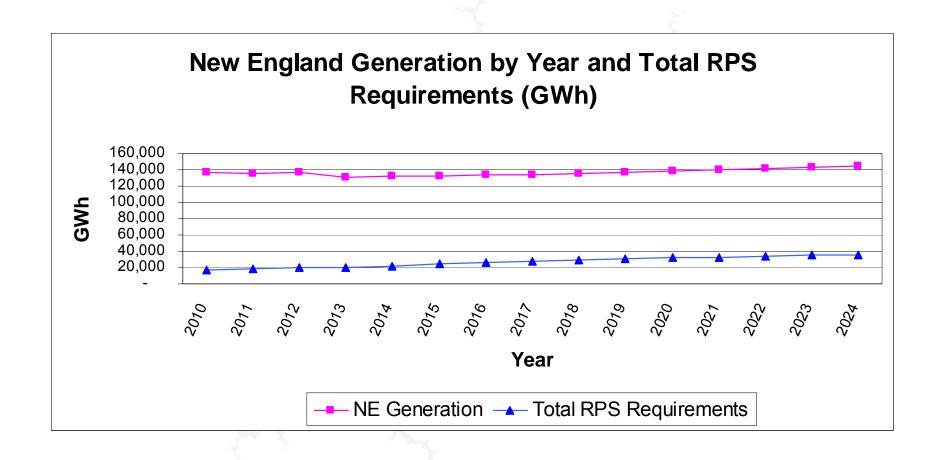

Key Drivers

- Low load growth
- Generation to comply with RPS requirements
- Natural gas prices
- Carbon emission regulations

AESC 2009 results vs AESC 2007 (state-wide, 15 year levelized)

- Annual values about 5% lower
- Peak period values 6% to 12% lower

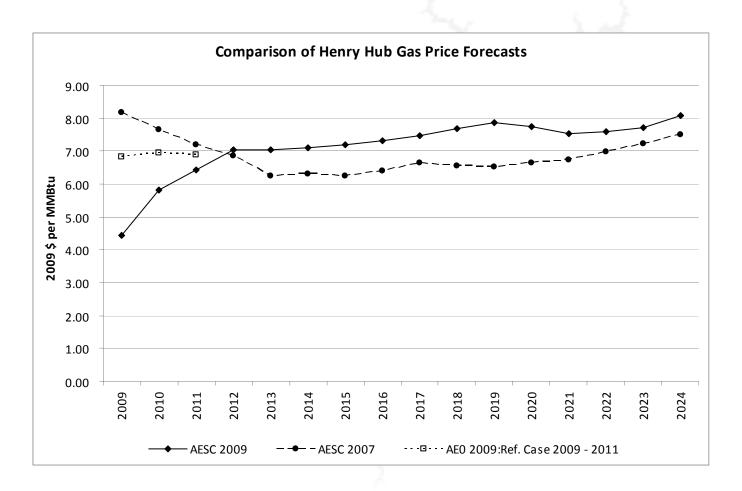



Based on the topology used for ISO-NE RSP 2006 with two exceptions:

- SME and ME combined to form CMP
- 2. Norwalk included in the rest of SWCT

New England Generation and RPS Requirements

Price of Gas For Electric Generation = Henry Hub + cost of delivery to generating units

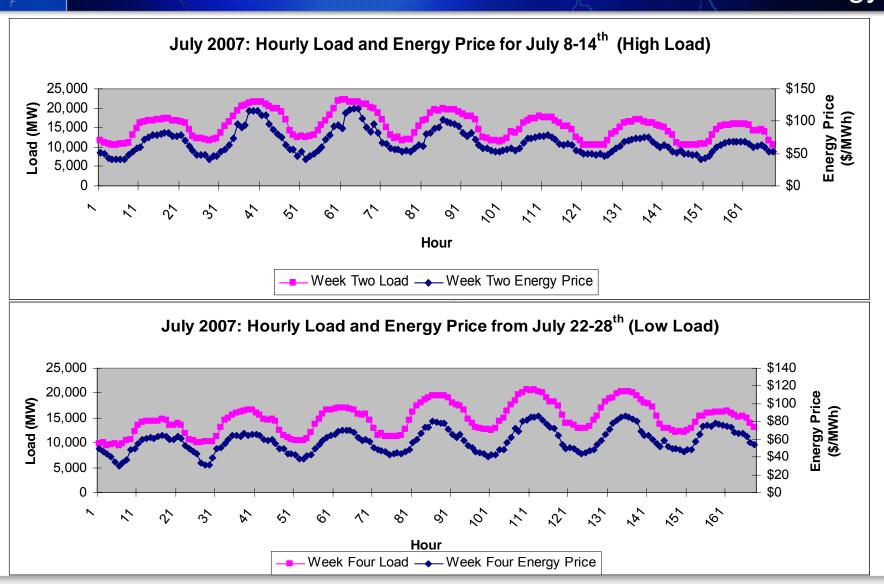

Henry Hub prices

- 2009 to 2011 per NYMEX monthly (as of March 31, 2009)
- 2012 to 2024 per AEO 2009 annual prices and AESC 2009 monthly coefficients from analysis of NYMEX

Cost of delivery to generating units


 Forecast based on analysis of historical differential between monthly average unit costs reported to EIA by generating units and HH prices

Exhibit 4- 10

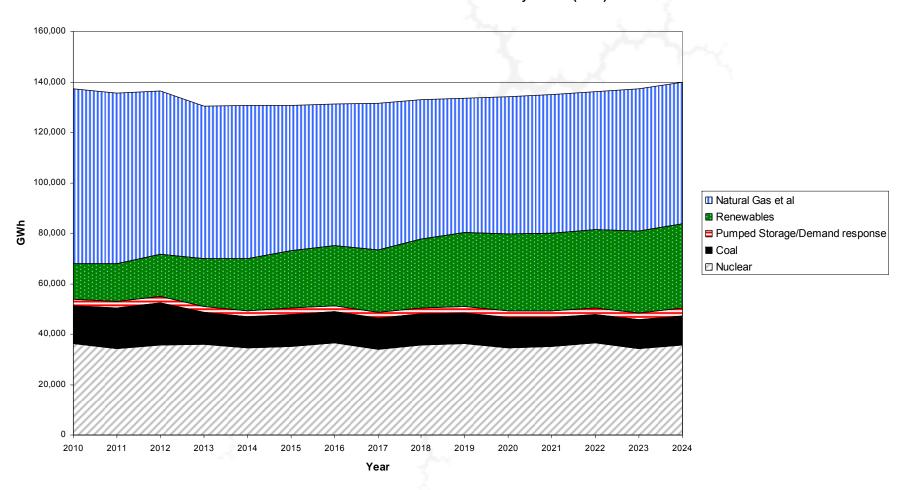


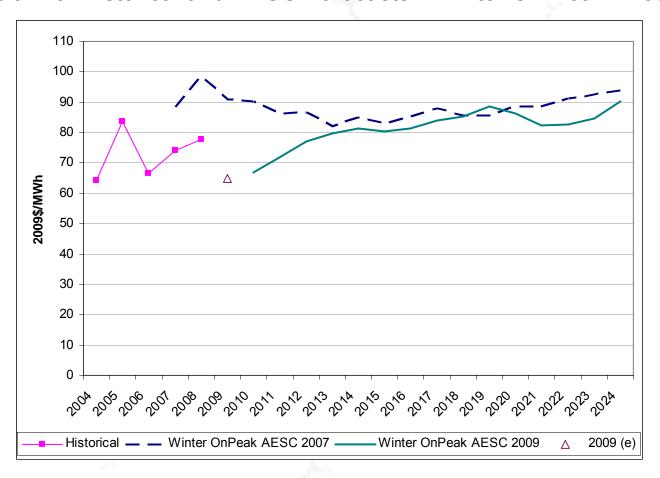
- Emission Allowance Prices
 - Emission allowance price forecasts for SO₂,
 NO_x, and CO₂
 - Price forecasts for SO₂ and O_x based upon values from allowance futures markets and experience with existing regulations
 - Price forecast for CO₂ assumes Regional Greenhouse Gas Initiative (RGGI) will be in effect in 2009 and will be replaced by national regulations for CO₂ in 2013.

Exhibit 3-3 Allowance Price Summary

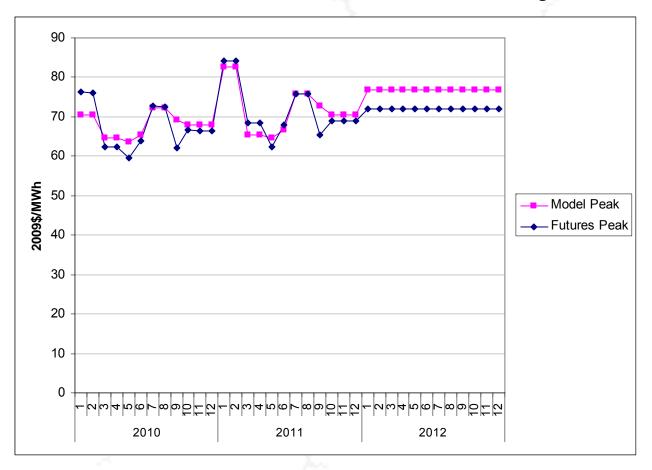

		Emission A	Allowance Pri	ces per sho	ort ton (nomin	al\$ and \$20	09)	
	N	IO ₂	S	O_2	C	O_2	RGGI Sce	nario CO ₂
Year	nominal	2009\$	nominal	2009\$	nominal	2009\$	nominal	2009\$
2009	\$2,075	\$2,075	\$61	\$61	\$3.85	\$3.85	\$3.85	\$3.85
2010	\$1,550	\$1,520	\$34.90	\$34.22	\$3.99	\$3.91	\$3.99	\$3.91
2011	\$785	\$755	\$33.90	\$32.58	\$4.18	\$4.02	\$4.18	\$4.02
2012	\$494	\$466	\$32.40	\$30.53	\$4.25	\$4.00	\$4.25	\$4.00
2013	\$623	\$576	\$31.50	\$29.10	\$15.00	\$15.63	\$4.34	\$4.00
2014	\$311	\$282	\$27.50	\$24.91	\$17.30	\$18.03	\$4.42	\$4.00
2015	\$317	\$282	\$18.10	\$16.07	\$19.50	\$20.32	\$4.51	\$4.00
2016	\$326	\$284	\$8.40	\$7.31	\$21.80	\$22.72	\$4.60	\$4.00
2017	\$333	\$284	\$7.80	\$6.66	\$24.00	\$25.01	\$4.69	\$4.00
2018	\$339	\$284	\$7.20	\$6.02	\$26.30	\$27.41	\$4.79	\$4.00
2019	\$346	\$284	\$6.60	\$5.41	\$28.50	\$29.70	\$4.88	\$4.00
2020	\$353	\$284	\$6.00	\$4.83	\$30.80	\$32.10	\$4.98	\$4.00

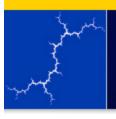
AVOIDED ELECTRICITY COSTS - Capacity in energy market


AESC 2009 Reference Case - Capacity by source (MW)


AVOIDED ELECTRICITY COSTS – Wholesale Energy Market Generation

AESC 2009 Reference Case - Generation by source (GWh)


AVOIDED ELECTRICITY COSTS - ENERGY


Exhibit 7- 9: Historical and AESC Forecasts – Winter On-Peak Prices

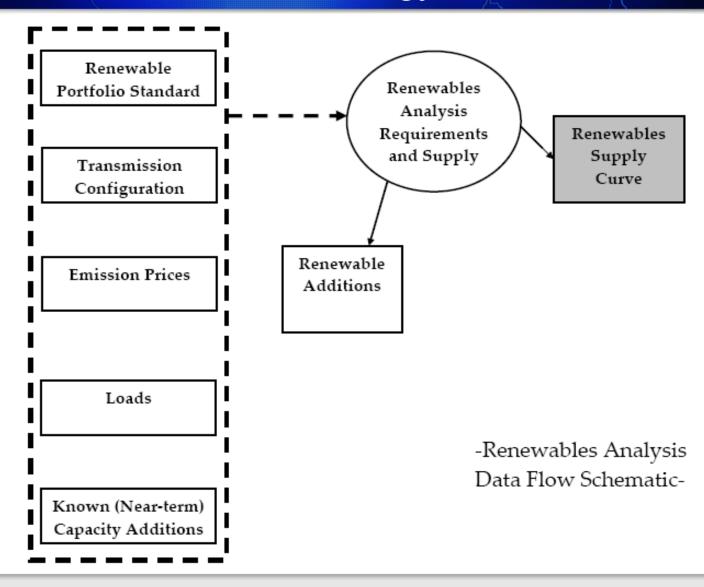

AVOIDED ELECTRICITY COSTS - ENERGY

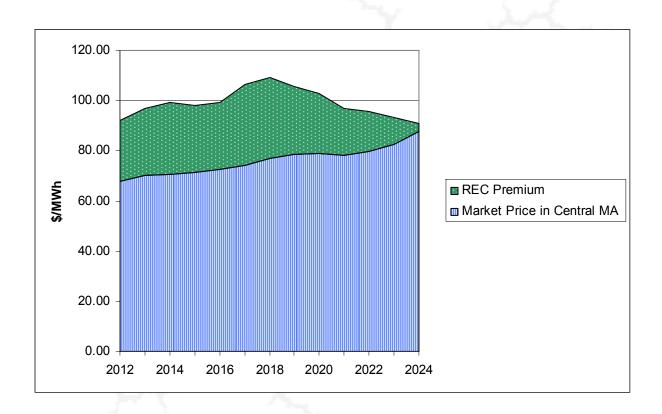
Exhibit 7- 13: AESC Peak Forecast vs. NYMEX New Eng Futures

AVOIDED ELECTRICITY COSTS – Class I Renewable Energy Certificates

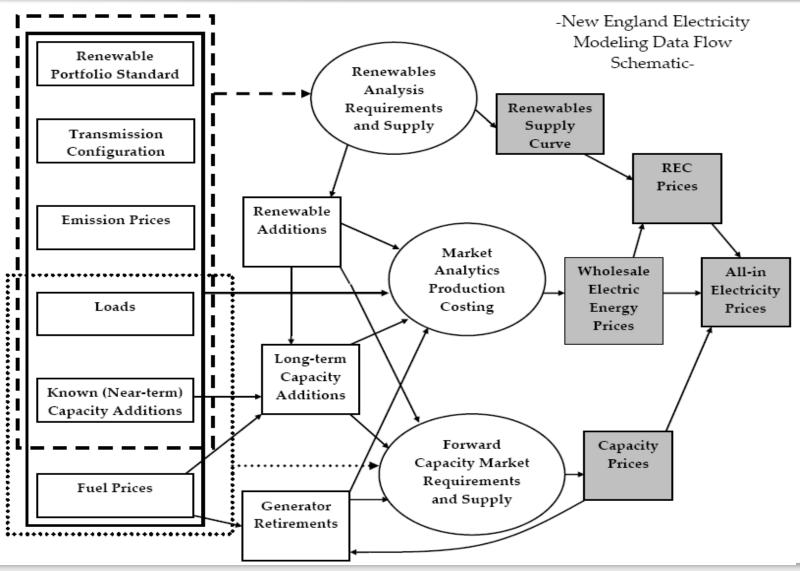
AVOIDED ELECTRICITY COSTS – Class I Renewable Energy Certificates

Exhibit 7C-1

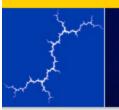
New England Annual RPS Requirements								
Class I (GWh)	Other Classes (GWh)	Total (GWh)						
4,566	10,396	14,962						
5,628	10,821	16,449						
6,856	10,989	17,844						
8,120	11,118	19,237						
9,494	11,133	20,627						
10,951	11,215	22,167						
12,645	11,275	23,919						
14,344	11,365	25,709						
16,105	11,434	27,539						
17,651	11,500	29,151						
19,156	11,510	30,666						
20,606	11,462	32,068						
21,523	11,487	33,010						
22,460	11,510	33,970						
23,416	11,534	34,950						
24,392	11,557	35,949						
	Class I (GWh) 4,566 5,628 6,856 8,120 9,494 10,951 12,645 14,344 16,105 17,651 19,156 20,606 21,523 22,460 23,416	Class I (GWh) (GWh) 4,566 10,396 5,628 10,821 6,856 10,989 8,120 11,118 9,494 11,133 10,951 11,215 12,645 11,275 14,344 11,365 16,105 11,434 17,651 11,500 19,156 11,510 20,606 11,462 21,523 11,487 22,460 11,510 23,416 11,534						


Notes

Class I also inloude voluntary demand Calculations based on CELT forecast and RPS requirements summarized in Task 3

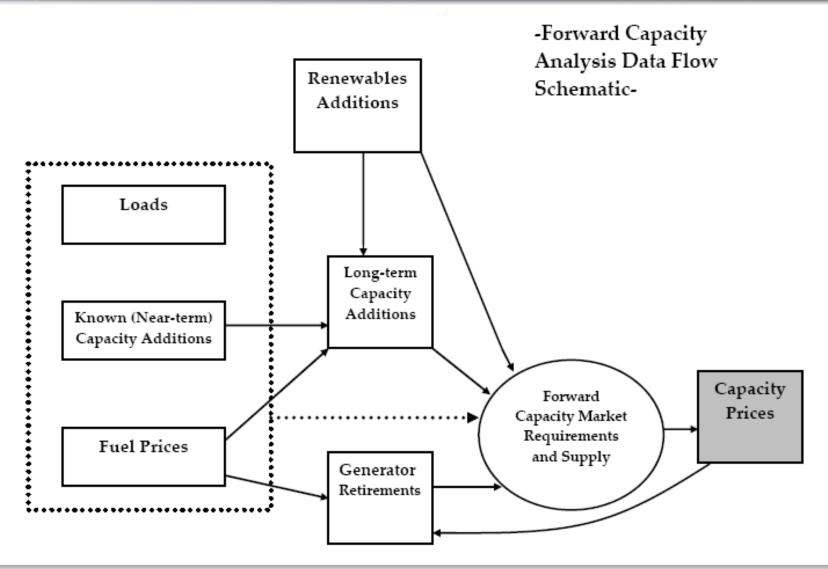

AVOIDED ELECTRICITY COSTS – Class I Renewable Energy Certificates

Wholesale Energy Market Price and REC Premium (\$/MWh


AVOIDED ELECTRICITY COSTS – Capacity, Energy and RECs

AVOIDED ELECTRICITY COSTS – Wholesale Risk Premium

- reflects the difference between the prices for electricity supply charged to retail customers under full-requirements fixed-price contracts during a given time period and the wholesale market prices for electric energy and capacity during the corresponding time period.
- primarily attributable to the costs marketers incur to mitigate their exposure to risk. Risks arise from the potential for costs to exceed revenues due to unexpected levels of consumption due to factors such as unexpected variations in weather, economic activity and and/or customer migration
- no utility sponsor of this project was able to provide public information on the retail adders implicit in the prices bid by suppliers
- The experience of members of the Study Group and the Project Team with confidential data on prices bid by suppliers into standard offer service auctions suggests that 9% is realistic to apply to wholesale energy and capacity prices
- Study Group members have flexibility to apply a different percentage


Key Drivers

- Low load growth
- Ample existing capacity
- Capacity from resources added to comply with RPS requirements
- Limited expected retirements

AESC 2009 results vs AESC 2007

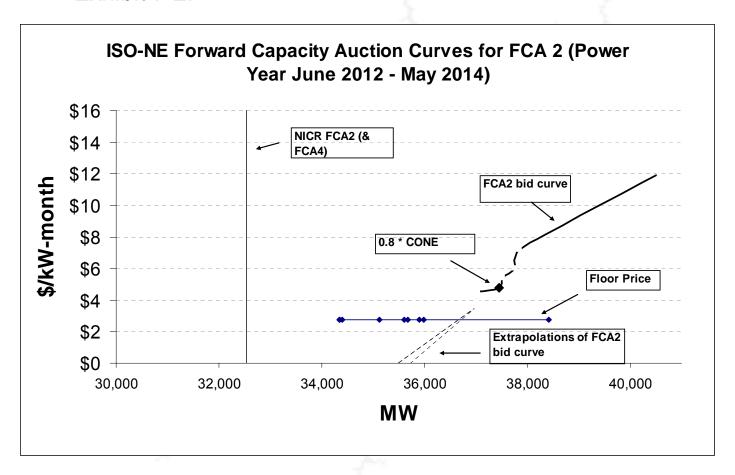

About 70% lower

Exhibit 7-2.

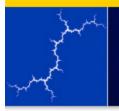
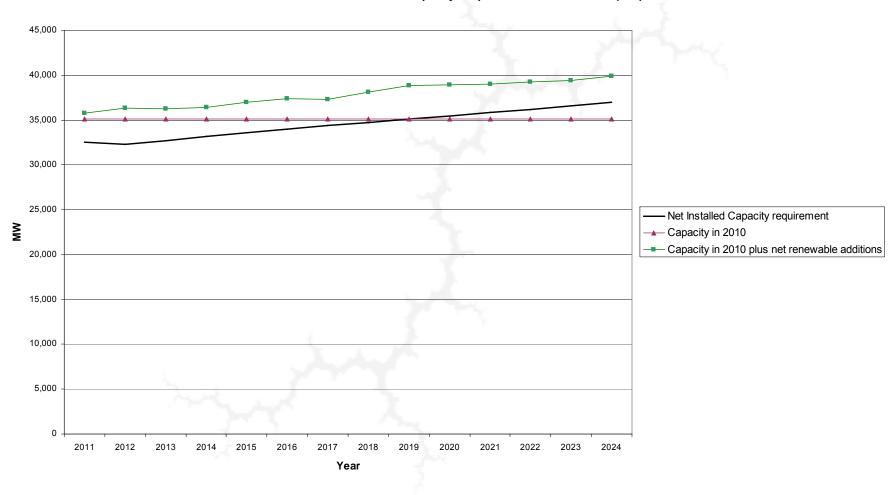


Exhibit 7-4. Capacity Requirements, Supply and Price

				NI-4						FCM F	Price
Capacity Year			Reserve Reginc.	Net Installed Capacity	Such	Annual Re	source Ad	justments		Floor Prices	00000
Starting	FCA	Peak Demand	HQ	Req	Adds	Retires	delists	renews	DR	Nominal\$	2009\$
		а	b	С	d	е	f	g	h	i	j
6/1/2010	1	28,160			- 3					\$4.50	\$4.3
6/1/2011	2	28,575	13.7%	32,528	- 3					\$3.60	\$3.4
6/1/2012	3	29,020	14.4%	32,276	156	-10	-753	159	-1050	\$2.95	\$2.7
6/1/2013	4	29,365	14.6%	32,731	125	-10	-3,117	216			\$1.3
6/1/2014	5	29,750	14.6%	33,183	γ	-10	275	187			\$1.4
6/1/2015	6	30,115	14.7%	33,628).	-10	218	237			\$1.5
6/1/2016	7	30,415	14.9%	34,027	ć	-10	229	180			\$1.6
6/1/2017	8	30,695	15.0%	34,374		-10	184	173			\$1.7
6/1/2018	9	30,960	15.1%	34,709		-10	139	207			\$1.8
6/1/2019	10	31,270	15.2%	35,097	7	-10	189	209			\$1.9
6/1/2020	11	<i>31,5</i> 66	15.3%	35,469	Jane	-10	229	152			\$2.0

Value of Illustrative Alternative Approaches to Avoiding Capacity Costs via Efficiency Measure Reductions in Peak Demand


	Values p	er ISO-NE N	NICR and FCA	dema	- PA bids 100% and reduction in corresponding F	nto each	dema	e 2 - PA bids zer and reduction in corresponding	nto each	dema	3 - PA bids 50% and reduction in corresponding l	ito eac	
	FCA#	FCA Price(1)	Avoided Capacity Cost to Load(2)	Reduction Bid into FCA	Impact of Reduction on NICR set for power year	Value of Reduction in Peak demand		Impact of Reduction on NICR set for power year	Value of Reduction in Peak demand		Impact of Reduction on NICR set for power year		lue of ction i demar
S		\$ per kw-yr	\$ per kw-yr	kw	kw		kw	kw		kw	kw		
Year		а	b	С	d	e = (a * c) + (b* d)	f	g	h = (a * f) + (b*g)	i	j	,	(a * i) [.] b*j)
2010	1	\$65.84	\$67.71	100	0	\$ 6,584	0	0	\$ -	50	0	\$	3,2
2011	2	\$50.58	\$52.02	100	0	\$ 5,058	0	0	\$ -	50	0	\$	2,5
2012	3	\$35.74	\$42.03	100	0	\$ 3,574	0	0	\$ -	50	0	\$	1,7
2013	4	\$16.85	\$19.85	100	0	\$ 1,685	0	0	\$ -	50	0	\$	8
2014	5	\$16.85	\$19.86	100	0	\$ 1,685	0	100	\$ 1,986	50	50	\$	1,8

²⁾ Includes wholesale risk premium of 9.0%

AVOIDED ELECTRICITY COSTS – energy DRIPE

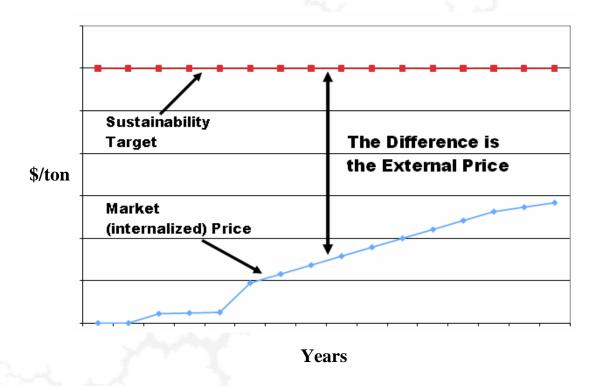
AESC 2009 Reference Case - Capacity Requirements vs Resources(MW)

AVOIDED ELECTRICITY COSTS – capacity DRIPE

- FCM generally expected to clear at very low prices from FCA4 onward.
- Impact of DSM on FCM market price is \$0.0005/kW-year (\$0.70/kw-yr per 100 MW of load reduction)
- We assume no impact 2010 to 2012 with full dissipation by 2016 (Exhibit 7C-7)

		nstallations in		
		2010	2011	Average
2	2010	\$ -	\$ -	\$ -
2	2011	\$ -	\$ -	\$ -
2	2012	\$ -	\$ -	\$ -
2	2013	\$0.41	\$0.41	\$0.41
1	2014	\$0.50	\$0.70	\$0.60
2	2015	\$0.30	\$0.50	\$0.40
2	2016	\$ -	\$0.30	\$0.15

Environmental Effects – CO2 Externality Value


CO2 identified as the one major emission associated with electricity usage whose internalized cost, as reflected in compliance prices, most significantly understates the externality value supported by current science.

The near-term internalized cost of carbon dioxide emissions will be driven by RGGI and proposed federal CO2 regulations. These regulations will only internalize a portion of the "greenhouse gas externality"

my my

Environmental Effects – CO2 Externality Value

Exhibit 7-13. Determination of the Additional Cost of CO₂ Emissions

Environmental Effects – CO2 Externality Value

	LT MAC	2009 AESC	2009 AESC	RGGI Only	RGGI Only
	(\$/short	Reference	Reference	Scenario	Scenario
	ton)	Allowance Price	Externality	Allowance	Externality
		(\$/short ton)	(\$/short	Price	(\$/short
			ton)	(\$/short	ton)
				ton)	
	а	b	c=a-b	d	e=a-d
2009	\$80	\$3.85	\$76.15	\$3.85	\$76.15
2010	\$80	\$3.91	\$76.09	\$3.91	\$76.09
2011	\$80	\$4.02	<i>\$75.98</i>	\$4.02	\$75.98
2012	\$80	\$4.00	\$76.00	\$4.00	\$76.00
2013	\$80	\$15.63	\$64.37	\$4.00	\$76.00
2014	\$80	\$18.03	\$61.97	\$4.00	\$76.00
2015	\$80	\$20.32	\$59.68	\$4.00	\$76.00
2016	\$80	\$22.72	\$57.28	\$4.00	\$76.00
2017	\$80	\$25.01	\$54.99	\$4.00	\$76.00
2018	\$80	\$27.41	\$52.59	\$4.00	\$76.00
2019	\$80	\$29.70	\$50.30	\$4.00	\$76.00
2020	\$80	\$32.10	\$47.90	\$4.00	\$76.00
2021	\$80	\$34.49	\$45.51	\$4.00	\$76.00
2022	\$80	\$36.79	\$43.21	\$4.00	\$76.00
2023	\$80	\$39.18	\$40.82	\$4.00	\$76.00
2024	\$80	\$41.48	\$38.52	\$4.00	\$76.00

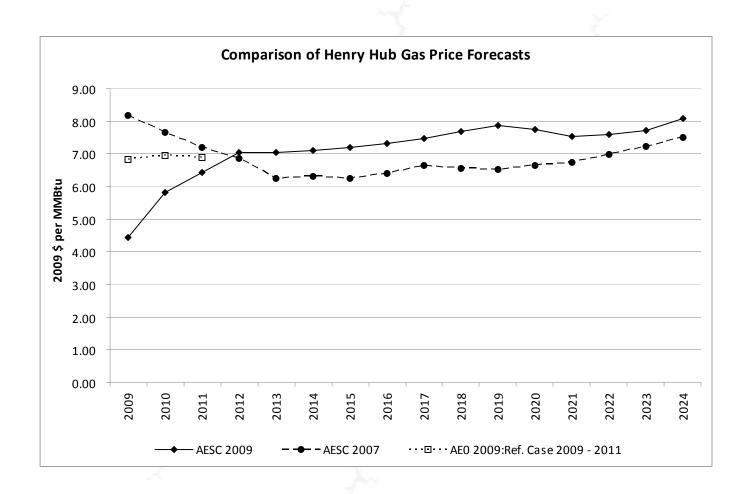
Notes

Values expressed in 2009 Dollars

Allowance Prices from Exhibit 2-4

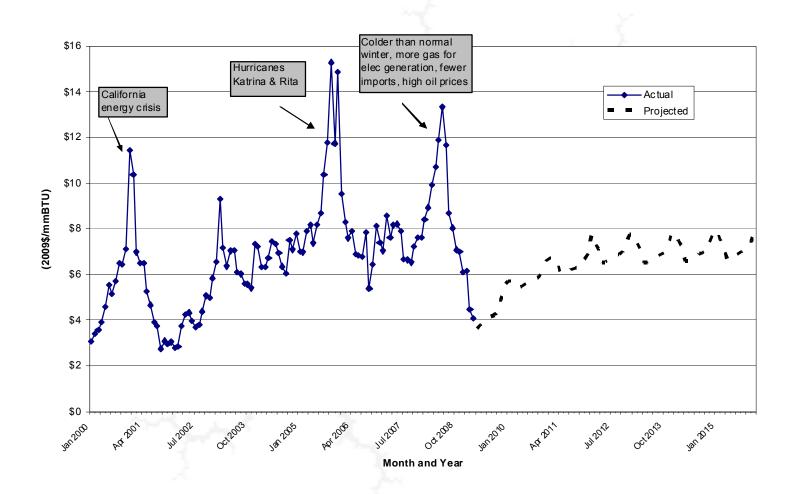
Inflation rate of 2%

Avoided Natural Gas Costs


Key Drivers

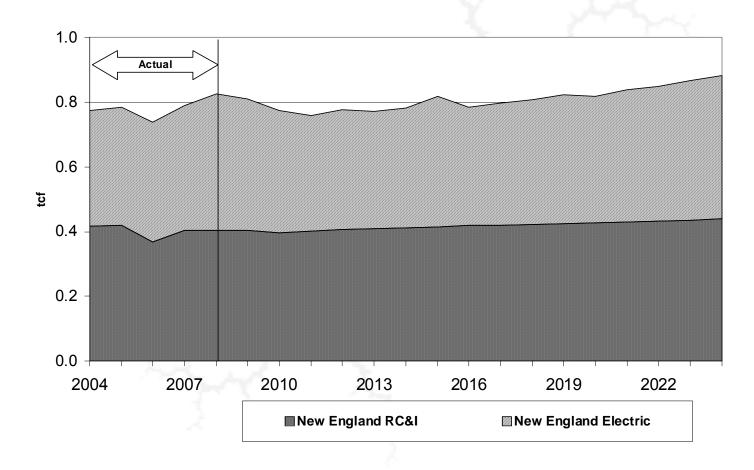
- limited load growth
- shale gas as major new marginal resource
- more accurate estimates of end use profiles

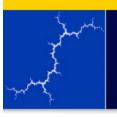
AESC 2009 results vs AESC 2007


- Henry Hub prices approximately the same

Avoided Natural Gas Costs – Henry Hub Prices

JAMES STATES


Avoided Natural Gas Costs – Volatility of HH Prices



Avoided Gas Costs

Annual Gas Use (tcf) in New England Actual and AEO 2009 Reference Case projection

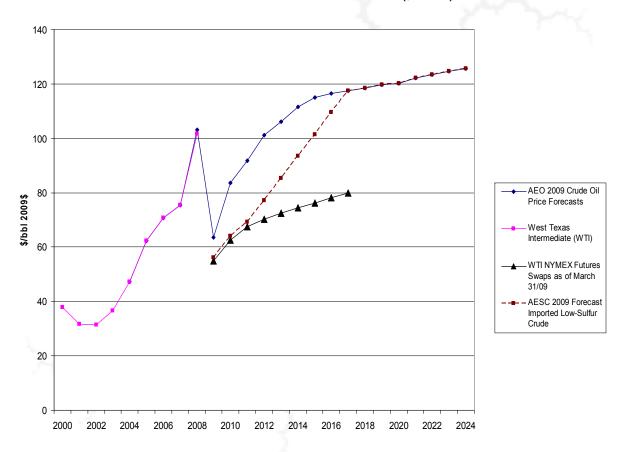
Avoided Gas Costs – Send out of Gas by source in Vermont

Avoided Natural Gas Costs

Exhibit 4-1 Summary Table

Summary of Levelize	ed Avoided (Cost Of Ga	s Delivered (2009\$/Dek		stomers AES	SC 2009 ve	rsus AESC 2	007
		RESID	ENTIAL	-	COMMER	ALL		
	Non Heating	Hot Water	Heating	All	Non Heating	Heating	All	RETAIL
AESC 2007 end-use period (a)		annual	5-month	6-month	annual	5-month	6-month	5-month
Southern New England								
AESC 2009	11.42	11.42	14.52	13.52	9.88	11.83	11.21	12.26
AESC 2007		11.62	12.84	12.48	9.50	10.72	10.36	11.65
2007 to 2009 change		-1.71%	13.09%	8.33%	4.04%	10.36%	8.25%	5.25%
Northern & Central New England				J.,.				
AESC 2009	10.87	10.87	13.54	12.67	10.02	12.05	11.40	12.03
AESC 2007		11.32	12.35	12.04	10.19	11.23	10.92	11.74
2007 to 2009 change		-3.96%	9.61%	5.27%	-1.66%	7.30%	4.39%	2.43%
Vermont			-1	_				
AESC 2009	9.72	9.72	12.43	11.56	8.01	9.44	9.00	9.93
AESC 2007		10.43	11.67	11.31	8.34	9.58	9.21	10.37
2007 to 2009 change	399	-6.84%	6.49%	2.21%	-3.89%	-1.37%	-2.31%	-4.20%

⁽a) In AESC 2007 the end-use profiles was defined as a certain number of months in the winter period; e.g. 5months is Nov. - March.


1.0420 Note: AESC 2007 levelized costs for 16 years, 2007 - 2022 at a discount rate of 2.2165%.

AESC 2009 levelized costs for 15 years 2010 - 2024 at a discoiunt rate of 2.22%.

⁽b) Factor to convert 2005\$ to 2007\$

Avoided Costs of Other Fuels

Low Sulfur Crude Actual and AESC 2009 Forecast (\$2009/bbl)

Avoided Costs of Other Fuels

Exhibit 5-1 Summary of Other Fuel Prices: AESC 2009 versus AESC 2007

	No. 2 Distillate	No. 2 Distillate	No. 6 Residual Fuel (low sulfur)	Propane	Kerosene	BioFuel	BioFuel	Wood
Sector	Res	Com	Com	Res	Res & Com	B5 Blend	B20 Blend	Res
AESC 2009 Levelized Value	es (2009\$/N	IMBtu)			, ,			
2010-2024	22.82	21.68	17.52	34.01	22.17	22.82	22.82	8.22
AESC 2007 Levelized Value	es (2009\$/N	IMBtu)						
2010-2024	15.31	13.50	9.15	30.99	15.92	15.31	15.31	5.48
Percent Difference from AE	SC 2007			- 7	r			
2010-2024	49.1%	60.6%	91.6%	9.8%	39.2%	49.1%	49.1%	49.9%

Notes

Res Residential Sector
Com Commercial Sector

AES C 2007 values from Exhibit 4-6 New England Average Price Forecast of Other Fuel Prices by Sector (AESC 2007)

AVOIDED ELECTRICITY and Natural Gas COSTS – Economic Development Impacts

Economic Development Impacts of Massachusetts Electric and Gas Energy Efficiency (EE) (Net Impact Multipliers per \$1 million)

	Electric EE Net Impact	Gas EE Net Impact
MULTIPLIERS (per \$1 million, 2009 \$)		
Employment (job-years)	22.9	19.1
Earnings	\$1,126,900	\$885,200
Value-Added	\$1,478,300	\$891,500

Contact

Rick Hornby

rhornby@synapse-energy.com

617-661-3248 x 243