

Benefit-Cost Analysis for Distributed Energy Resources In New York

A Framework for Accounting for All Relevant Costs and Benefits

Prepared for Advanced Energy Economy Institute

October 2, 2014

Tim Woolf
Synapse Energy Economics

Acknowledgements

• Full report:

Tim Woolf et al., Benefit-Cost Analysis for Distributed Energy Resources: A Framework for Accounting for All Relevant Costs and Benefits (Synapse Energy Economics, prepared for the Advanced Energy Economy Institute, September 22, 2014).

http://info.aee.net/benefit-cost-analysis-for-der-synapse or http://synapse-energy.com/project/benefit-cost-analysis-distributed-energy-resources

 Research supported by the Rockefeller Brothers Fund and the Energy **Foundation**

New York Reforming the Energy Vision

- The REV docket sets out a comprehensive, ambitious, and forward-thinking vision for the New York electric system.
- The benefit-cost analysis is the backbone of the initiative that will enable New York to achieve its vision and goals.
- "... A wide range of distributed energy resources will be coordinated to manage load, optimize system operations, and enable clean distributed power generation." - Staff Straw Proposal on Track One
- Distributed energy resources (DER):
 - Energy efficiency
 - Demand response
 - Distributed generation
 - Distributed storage

Fundamental Premise in the Recommendations

- In order to meet the Commission's goals, all components of the DER benefitcost analysis must be designed in a way that is consistent with those goals:
 - The choice of screening test.
 - Accounting for relevant costs.
 - Accounting for relevant benefits, including those associated with policy goals.
 - The choice of discount rate.
- Clearly articulated policy goals:
 - Provide low-cost electricity services
 - Empower customers
 - Animate the markets for distributed energy resources
 - Improve system efficiency and resource diversity
 - Ensure reliability and resiliency
 - Reduce greenhouse gas emissions

The Standard Efficiency Screening Tests

	Participant Test	RIM Test	Utility Test	TRC Test	Societal Test
Energy Efficiency Program Benefits:					
Customer Bill Savings	Yes				
Avoided Energy Costs		Yes	Yes	Yes	Yes
Avoided Capacity Costs		Yes	Yes	Yes	Yes
Avoided Transmission and Distribution Costs		Yes	Yes	Yes	Yes
Wholesale Market Price Suppression Effects		Yes	Yes	Yes	Yes
Avoided Cost of Environmental Compliance		Yes	Yes	Yes	Yes
Non-Energy Benefits (utility perspective)		Yes	Yes	Yes	Yes
Non-Energy Benefits (participant perspective)	Yes			Yes	Yes
Non-Energy Benefits (societal perspective)					Yes
Energy Efficiency Program Costs:					
Program Administrator Costs		Yes	Yes	Yes	Yes
EE Measure Cost: Program Financial Incentive		Yes	Yes	Yes	Yes
EE Measure Cost: Participant Contribution	Yes			Yes	Yes
Non-Energy Costs (utility, participant, societal)		Yes	Yes	Yes	Yes
Lost Revenues to the Utility		Yes			

Implications of the Standard Tests

Test	Key Question Answered	Costs and Benefits Included	Implications		
Societal Cost Test	Will there be a net reduction in societal costs?	Costs and benefits experienced by all members of society.	Most comprehensive. Best able to account for all energy policy goals.		
Total Resource Cost Test	Will there be a net reduction in costs to all customers?	Costs and benefits experienced by all utility customers, including program participants and non-participants.	Indicates the full incremental costs of the resource. Generally includes full societal costs but not full societal benefits.		
Utility Cost Test	Will there be a net reduction in utility system costs?	Costs and benefits to the utility system as a whole, including generation, transmission, and distribution impacts.	Indicates the impact on average customer bills.		
Participant Cost Test	Will there be a net reduction in program participant costs?	Costs and benefits experienced by the customer who participates in the program.	Of limited use for cost- effectiveness screening. Useful in program design to understand and improve participation.		
Rate Impact Measure	Will there be a net reduction in utility rates?	Costs and benefits that will affect utility rates, including utility system impacts plus lost revenues.	Should not be used for cost- effectiveness screening. Does not provide useful information regarding rate impacts or customer equity impacts.		

Fixing the Screening Tests

- Standard cost-effectiveness tests fail to capture full value of resources
 - Too narrowly defined
 - Hard-to-quantify costs and benefits are ignored
 - Benefits associated with energy policy goals are not necessarily captured
- The Resource Value Framework
 - Developed by several efficiency experts to address the limits of the standard tests.
 - Requires the application of several key principles:
 - Screening should identify those resources that are in the public interest.
 - Screening should account for energy policy goals of the state.
 - Screening practices should ensure that tests are applied symmetrically.
 - Hard-to-quantify impacts should not be ignored.
 - Screening practices and assumptions must be transparent.
 - Supported by dozens of organizations.
 - Can be applied differently across different states, to reflect the specific goal of each state.

Tests to Use for the Benefit-Cost Analysis

Staff proposed that the results of three test be reported:

- The Societal Cost Test
 - Staff implied that this should be the primary test.
- The Utility Cost Test
 - Will provide information on the impacts on total system costs and average customer bills.
- The Rate Impact Measure Test
 - Should not be used for screening distributed energy resources.
 - Better approaches for analyzing rate impacts are available.

Recommendations:

- Use the Societal Cost test is most consistent with the Commission's stated goals.
- Report the results of the Utility Cost test for the purpose of understanding bill impacts.
- Do not use the RIM test better options should be used.

Problems with the RIM Test

The RIM Test should not be used for screening DER.

Meaningless

 Does not provide any meaningful information about the magnitude of rate impacts, or customer equity.

Misguided

Will not result in lowest costs to customers.

Inappropriate

 Includes sunk costs, which should not be used for choosing new resource investments.

Misleading

Results suggest that customers will be exposed to new costs, which is not true.

Incorrect

Often overstates the amount of revenues actually lost.

Other approaches should be used to assess rate and equity impacts.

Better Options for Assessing Rate Impacts

- A thorough understanding of rate impacts requires a comprehensive analysis of three important factors:
 - Rate impacts, to provide an indication of the extent to which rates for all customers might increase.
 - Bill impacts, to provide an indication of the extent to which customer bills might be reduced for those customers that install distributed energy resources.
 - <u>Participation impacts</u>, to provide an indication of the portion of customers that will experience bill reductions or bill increases.
 - Participating customers will generally experience bill reductions, while non-participants might see rate increases leading to bill increases.
- Taken together, these three factors indicate the extent to which customers will benefit from distributed energy resources.
- Participation impacts are also key to understanding the extent to which distributed energy resources are being adopted over time.

Universe of DER Impacts

		BENEFITS	COSTS				
	Category	Examples	Category	Examples			
Impacts on All Customers	Load Reduction & Avoided Energy Costs	Avoided energy generation and line losses, price suppression	Program Administration Costs	Program marketing, administration, evaluation; incentives to customers			
Customers	Demand Reduction & Avoided Capacity Costs	Avoided transmission, distribution, and generation capacity, price suppression	2 Utility System Costs	Integration capital costs, increased ancillary services costs			
	Avoided Compliance Costs	Avoided renewable energy compliance costs, avoided power plant retrofits	3 DSP Costs	Transactional platform costs			
	4 Avoided Ancillary Services	Regulation, reserves, energy imbalance					
	5 Utility Operations	Reduced financial and accounting costs, lower customer service costs					
	6 Market Efficiency	Reduction in market power, market animation, customer empowerment					
	7 Risk	Project risk, portfolio risk, and resliency					
Participant Impacts	Participant Non-Energy Benefits	Health and safety, comfort, tax credits	1 Participant Direct Costs	Contribution to measure cost, transaction costs, O&M costs			
	Participant Resource Benefits	Water, sewer, and other fuels savings	Other Participant Impacts	Increased heating or cooling costs, value of lost service, decreased comfort			
Societal Impacts	1 Public Benefits	Economic development, reduced tax burden	1 Public Costs	Tax credits			
	Environmental Benefits	Avoided air emissions and reduced impacts on other natural resources	2 Environmental Costs	Emissions and other environmental impacts			

Accounting for the Impacts - I

1. Direct monetization.

- The preferred approach wherever possible.
- Markets can be used to indicate the monetary value of several key benefits.

2. Proxies.

- An explicit recognition that a particular impact should not be ignored and should be approximated using the best information available.
- Can be applied in several forms: multiplier on avoided costs, multiplier on electricity saved, multiplier on participants served.
- Can be developed at different levels of granularity: portfolio level, resource level, sector level, program level, or impact level.
- Have been used by some states for energy efficiency screening purposes.

3. Alternative screening benchmarks.

- Use a pre-determined benefit-cost ratio benchmark less than 1.0, to reflect benefits that are not accounted for with monetization or proxies.
- Can be much less detailed than proxies.

Accounting for the Impacts - II

4. Regulatory judgment.

- Allows regulators to make cost-effectiveness determinations by qualitatively considering:

 (a)the specific DER being analyzed;
 (b) the monetized impacts of that DER;
 and (c) the non-monetized impacts of the DER.
- Should use the greatest amount of monetized and quantified information available.

5. Multi-attribute decision analysis

- A systematic process for weighting and scoring both monetized and non-monetized criteria in order to rank several options across all criteria.
- Requires some regulatory judgment with regard to weights.
- Care must be taken to prevent inappropriate manipulation.

NORMALIZED DATA	Net Present Value of Monetized Costs and Benefits		Contribution to Market Animation		Economic Development (Job- Years)		Non-Monetized Environmental Benefits		Overall Score
	Normalized	Weight	Normalized	Weight	Normalized	Weight	Normalized	Weight	
Alternative A	\$0.41	0.65	0.14	0.15	0.13	0.10	0.17	0.10	0.32
Alternative B	\$0.31	0.65	0.43	0.15	0.48	0.10	0.33	0.10	0.35
Alternative C	\$0.28	0.65	0.43	0.15	0.38	0.10	0.50	0.10	0.33

Risk

- Distributed energy resources offer several risk benefits, including:
 - Fuel price hedge
 - Resource diversity
 - Optionality in investment timing (fast, small increments, flexible)
 - Resiliency
 - Geographic diversity
 - Less dependent on centralized grid
 - Ability to cope with stress on the system (storms, peak demand, emergency outages)

Discount Rates Used for EE Screening

States have chosen a variety of different discount rates for energy efficiency screening – both in terms of the basis for the rate, and the value of the rate.

	Primary Test									
	UCT		Tota	Societa	al Cost Test					
	СТ	NY	NH	RI	MA	DE	VT	DC		
Basis for	Utility	Utility	Prime	Low-Risk	Low-Risk	Societal	Societal	Societal		
Discount Rate	WACC	WACC	Rate	10 yr Treasury	10 yr Treasury	Treasury Rate	Societal	10 yr Treasury		
Current Discount Rate (Real)	7.43%	5.50%	2.46%	1.15%	0.55%	TBD	3.00%	1.87%		

Discount Rate Implications

Discount rates from the previous slide are applied to a hypothetical (but realistic) stream of future benefits.

Discount Rate - Concepts

- The discount rate should reflect the appropriate "time preference."
 - o i.e., the relative importance of short-versus long-term benefits.
- The purpose of the benefit-cost analysis is to identify those resources that meet a set of regulatory goals:
 - Reduced costs, increased system efficiency, improving reliability and resiliency, mitigating risks, reducing carbon emissions, animating markets, empowering customers.
- The discount rate chosen must reflect a time preference that is consistent with these regulatory goals.
 - o Otherwise, the BCA will not lead to resources that meet these goals.
- The discount rate chosen must reflect a time preference that is relevant to all utility customers as a whole:
 - Not the utility investors' time preference.
 - Not any one customer's time preference.
 - Should be the regulators' time preference: i.e., what is in the public interest?

Discount Rates – Recommendations

- Risk benefits should be considered in choosing a discount rate.
 - If risk benefits are addressed through other means (e.g., proxies), then they should have less impact on the choice of discount rate.
- The utility weighted average cost of capital should not be used to set the discount rate for the DER benefit-cost analysis.
 - Utility investors have a different time preference than regulators.
- A societal discount rate should be used for the DER benefit-cost analysis.
 - This rate is consistent with a time preference that best reflects the Commission's goals.
 - Will apply greater weight to benefits in later years.
- Societal discount rates tend to range from 0% to 3% real.
 - Risk benefits should help determine what rate to use within this range.
- The same discount rate should be used for the Utility Cost Test.
 - Because a societal discount rate is most consistent with the Commission's goals.

Bringing It All Together

Sample Templates

Example: Choice of Valuation Methodology

Party		Benefits	Valuation Method				
Impacted		Benefit Category	Monetization	Proxy	Multi- Attribute		
	1	Load Reduction & Avoided Energy Costs	yes				
	2	Demand Reduction & Avoided Capacity Costs	yes				
Utility	3	Avoided Compliance Costs	yes				
Customers	4	Avoided Ancillary Services	yes				
Customers	5	Utility Operations	yes				
	6	Market Efficiency			yes		
	7	Risk		yes			
Participants	8	Participant Non-Energy Benefits		yes			
raiticipalits	9	Participant Resource Benefits	yes				
Society	10	Public Benefits	yes		yes		
Society	11	Environmental Benefits	yes		yes		

Example: Present all Impacts in One Place

Perspective	Impacts (Direct Monetization or Proxy \ Benefits	Present Va	alue	Costs	Present Value		
reispective	Avoided Energy Costs	\$	_	Program Administration, Marketing, Evaluation	\$ -		
	Avoided Line Losses	ς .	_	Incentives Paid to Participants	\$ -		
	Avoided Generation Capacity Costs	\$	_	Capital Costs	\$ -		
	Avoided Decommissioning	ς .	_	Increased Energy Costs	\$ -		
	Wholesale Market Price Suppression	\$	_	Increased Environmental Compliance Costs	\$ -		
Utility	Avoided T&D Costs	\$	_	Integration Costs - Distribution	\$ -		
Customers	Avoided Environmental Compliance Costs	\$	_	Integration Costs - Transmission	\$ -		
	Avoided Ancillary Services	\$	_	Integration Costs - Ancillary Services	\$ -		
	Reduced Utility Operations Costs	\$	_	Distribution System Platform Costs	\$ -		
	Proxy Value of Risk Benefits	\$	_	Distribution System Fluction Costs	Ψ		
	Total Benefits to Utility Customers	\$	-	Total Costs to Utility Customers	\$ -		
	Other fuel savings	\$	_	Capital Costs	\$ -		
	Water & Sewer	\$	-	Annual O&M Costs	\$ -		
Participants	Proxy Value of Non-energy benefits	\$	-	Proxy Value of Transaction Costs	\$ -		
•	Proxy Value of Non-energy benefits	\$	-	Proxy Value of Non-Energy Costs	\$ -		
	Total Participant Benefits	\$	-	Total Participant Costs	\$ -		
	Tax impacts from public buildings	\$	-	Tax credits	\$ -		
Society	Total Societal Benefits	\$	-	Total Societal Costs	\$ -		
TOTAL	Total Monetized Benefits	\$	-	Total Monetized Costs	\$ -		
	Utility System Net Present Value:	\$	-	Utility System Benefit-Cost Ratio	:		
	Societal Net Present Value:	\$	-	Societal Benefit-Cost Ratio	:		
Non-Monet	ized Impacts						
Perspective	Impact			Quantitative Values or Comments			
Utility Customers	Contribution to Market Animation			e.g., program expected to promote market for rooftop PV			
	Economic development			e.g., job-years, or gross state product impacts			
Society	Reduced environmental impacts			e.g., impacts of CO ₂ emissions not monetized above			
	Increased environmental impacts			e.g., increased CO ₂ emissions from fossil generation from DR			

Example: Applying MADA to Reach a Conclusion

RAW DATA	Net Present Value of Monetized Costs and Benefits		Contributi Market Ani		Econor Develop (Job-Ye	ment	Non-Monetized Environmental Benefits		
	(Millions) Weig		Weight	(Qualitative Score)	Weight	(Estimate)	Weight	(Qualitative Score)	Weight
Alternative A		\$1.47	0.65	Low (= 1)	0.15	615	0.10	Low (= 1)	0.10
Alternative B		\$1.11	0.65	High (= 3)	0.15	2189	0.10	Med (= 2)	0.10
Alternative C		\$0.98	0.65	High (= 3)	0.15	1753	0.10	High (= 3)	0.10

N	ORMALIZED DATA	Net Present Value of Monetized Costs and Benefits		Contributi Market Ani		Economic Development (Job- Years)		Non-Monetized Environmental Benefits		Overall Score
		Normalized	Weight	Normalized	Weight	Normalized	Weight	Normalized	Weight	
Αl	ternative A	\$0.41	0.65	0.14	0.15	0.13	0.10	0.17	0.10	0.32
Αl	ternative B	\$0.31	0.65	0.43	0.15	0.48	0.10	0.33	0.10	0.35
Αl	ternative C	\$0.28	0.65	0.43	0.15	0.38	0.10	0.50	0.10	0.33

Contact Information

Tim Woolf
Vice President
Synapse Energy Economics
617-661-3248

twoolf@synapse-energy.com www.synapse-energy.com