Consumer and Environmental Benefits of Load Response

Lucy Johnston Synapse Energy Economics 22 Pearl Street, Cambridge, MA 02139 www.synapse-energy.com

Keeping the Lights on and the Air Clean

July 16, 2001

Load response is good – *if we make it so*

• The promise:

- Market efficiency
- Lower prices for all
- Opportunities low emission alternatives to grid power
- Emission reductions through power system optimization
- Reliability
- The threat:
 - "Load response programs" without demand elasticity
 - Missed opportunities for innovation and load reduction
 - "Dirty Little Diesels" operating on bad air days
- Where we end up depends on the questions we ask, what we learn, and what we do with our learning.

Seizing the Opportunity: the Northeast Load Response Initiative

- Project includes UCS, Pace Energy Project and Project for Sustainable FERC Energy Policy
- Goal: Encourage load response AND ensure that it's consistent with long term goal of environmental quality
 - Focus on load response programs as first step
 - Broaden discussion to include environmental issues associated with load response as well as economic and reliability issues.
 - Unique perspective in market participant discussions
- Coordination in Northeast to identify and encourage best practices consistent with goal

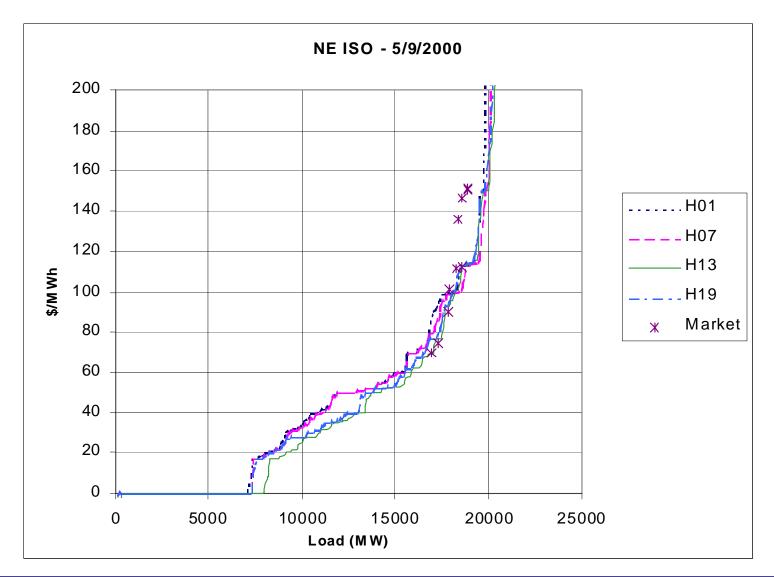
Overview of Load Response

- Electricity consumer(s) *responding* to outside indicators by changing their grid electricity usage ("*load*").
- Indicators:
 - Economic e.g. bills, prices, payments, shared savings
 - Power system conditions e.g. reliability
- Methods:
 - Shift load off peak load management
 - Shift load to non-grid power source customer-site generation
 - Reduce peak load energy efficiency, conservation
- Tools:
 - Signal to consumer
 - Measure change in load

(Un)Necessary Components of Load Response

- Reason for customer to change usage signal to consumer
 - Economic
 - Mechanical
- Load response doesn't require real-time pricing
- Method to measure change in load
- Load response doesn't require interval metering

Why Load Response?


Old Idea	+	Evolving Technology	+	New Urgency
"Spot Pricing Electricity," I Schweppe, 1988	Fred	Load control from the enhanced with developments of microprocessors and electronic communicat		Bid based wholesale markets with price volatility and system reliability problems

Consumer "qua consumer" benefits

- All consumers can benefit
 - Lower peak load lower peak prices
 - Market discipline less opportunity for market manipulation
 - Reliability
 - System optimization
- Individual consumers can benefit
 - Avoid peak prices
 - Various "incentives" shared savings, payment, etc.
 - Better electrical service

Load response reduces market price

Environmental benefits (we hope!)

- Direct No- or low-emission resources
 - Energy efficiency
 - Improved load management
 - New technologies and applications
- Indirect System optimization
 - Displacement
 - Reserves
 - Ramp-up and ramp-down for peak

Improving system operations

- ISO NE analyses project emissions reductions from meeting reserve requirements with customer-site DG.
- Results for 300 MW case (presented to NE air regulators 11-00):
 - Total Production Cost Savings: \$17 Million (Minimum)
 - \$7 Million Ozone Season
 - \$10 Million Non-Ozone Season
 - Total Annual Reduction in SO₂ Emissions: 88 Tons
 - (26) Tons Ozone Season
 - 114 Tons Non-Ozone Season
 - Total Annual Reduction in CO₂ Emissions: 268 Ktons
 - 114 Ktons Ozone Season
 - 154 Ktons Non-Ozone Season
 - Total Annual Reduction in NO_X Emissions: 390 Tons
 - 214 Tons Ozone Season
 - 176 Tons Non-Ozone Season

Northeast load response initiative – focus areas

- Assess and address environmental impacts
 - Environmental regulation
 - Avoid bias towards generation
 - Resolve unanswered questions
- Broaden participation to small and medium customers
 - Metering and statistical methods
 - Load profiling
 - Load response aggregation, …
- Ensure demand bidding
- Understand gaming and free/riders
- Establish load response participation targets
- Expand use of load response: reserves, capacity credit
- Program review

Next steps

- Program review (successes and failures)
- Environmental regulatory action
 - New regulations for a new context
 - Competitive efficiency
 - Integration of load response into the market
- Answers to questions
 - How do customers act in load response programs?
 - What's the load response supply curve?
 - What are the direct emissions impacts of load response?
 - How does load response, especially DG, interact with the power system?
 - What are the barriers to no- and low-emission load response options?