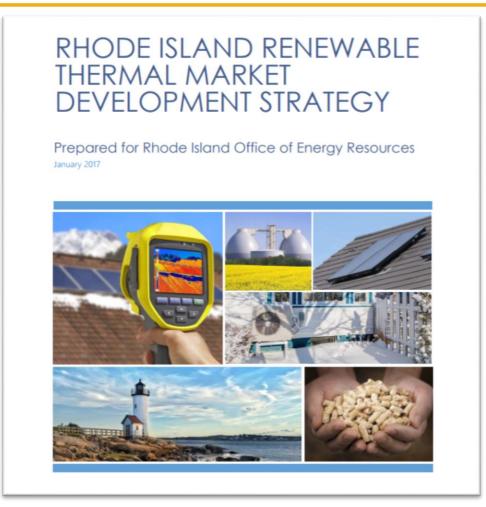


Rhode Island Renewable Thermal Market Strategy: The Impacts of Getting to 5 Percent Penetration

9th International Conference on Energy Efficiency in Domestic Appliances And Lighting – EEDAL 2017

September 15


Kenji Takahashi Synapse Energy Economics

www.synapse-energy.com | ©2017 Synapse Energy Economics Inc. All rights reserved.

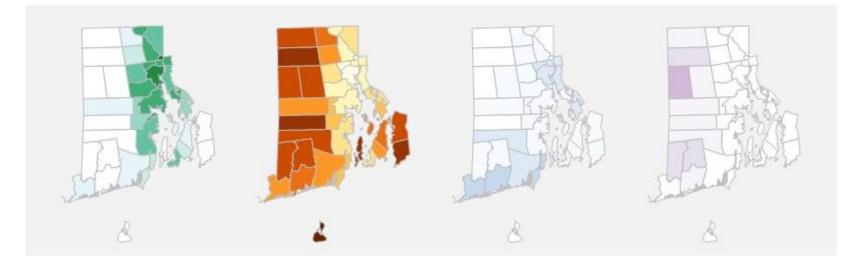
Content

- The Strategy Report
- Why Renewable Thermal?
- Analysis approach and results
 - Cost-effectiveness
 - Rate and bill impact
 - Employment impact
 - Emissions impact

Report for Rhode Island Office of Energy Resources

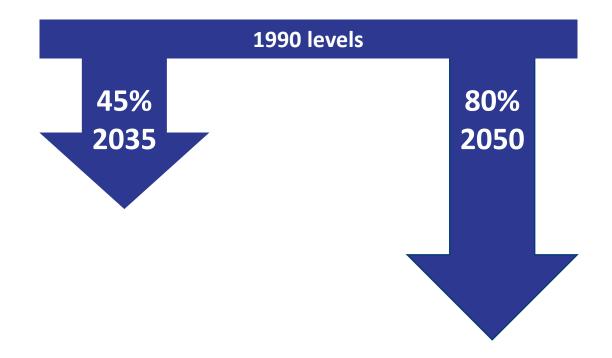
Available at <u>http://www.energy.ri.gov/reports-publications/past-projects/ri-renewable-thermal-market-development-strategy.php</u>

Key Findings


- The 5% RE Thermal (RT) scenario is cost-effective
 - Cost-effectiveness varies greatly by technology
 - Our sensitivity analysis show possible improvements in cost-effectiveness
- In addition, the RT scenario:
 - Results in negligible rate and bill impacts
 - Produces net jobs for the state
 - Saves CO₂ emissions

Why Renewable Thermal?

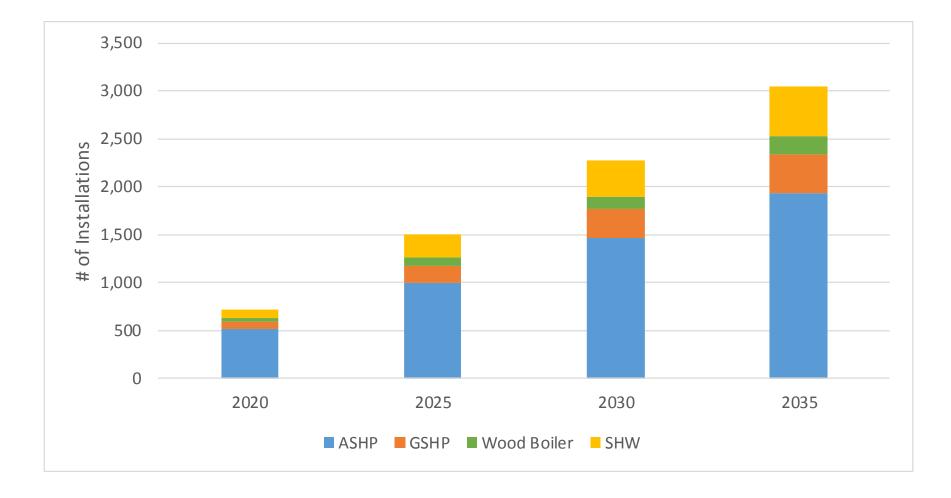
Thermal Fuel Use in Rhode Island


1/3 Total Energy Use | 1/3 GHG Emissions

Household Fuel Use

Utility Gas	Delivered Fuel	Electricity	Wood/Other	
54%	33%	9%	4%	

The Resilient Rhode Island Act of 2014


New opportunities with Renewable Thermal: Rhode Island can help meet its GHG emission reduction goals and reap substantial economic benefits by changing heating fuel sources to "renewable thermal" sources.

Scenario

- **Target**: Achieve 5 percent renewable thermal energy penetration by 2035 by providing technical support and financial incentives to RT technologies.
- Sector: residential single-family, multi-family, and small commercial customers (less than 20,000 sf).
- **RE Technologies**: ASHP, GSHP, wood boilers, and solar hot water (SHW) systems.
 - Due to the economics of different technologies and the size of current markets, we assumed that ASHP would be the prevailing RI technology deployed in this scenario.

Key Assumptions

RT Installation by Technology

RE Thermal Applications and Costs

• GSHP and Wood boilers:

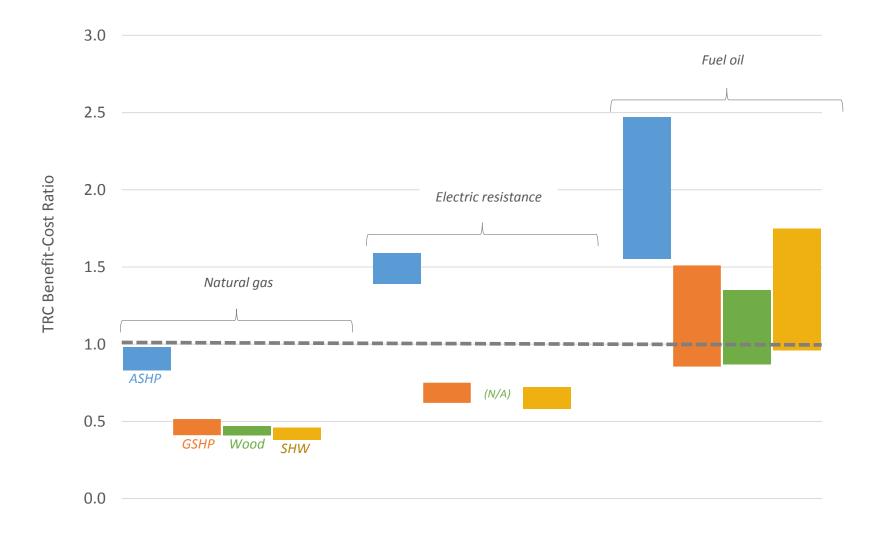
- Serves 100% of building heating needs
- Installed instead of a standard system
- The incremental cost beyond the cost of a standard system is used.

• SHW and ASHP:

- Serve 70 % of building heating needs
- Residents and businesses would keep their existing heating equipment as a backup or a supplemental heating source.
- Other possible technology configurations where ASHPs are used to serve the full heating load were considered but excluded due to wide degree of variability in these installations.

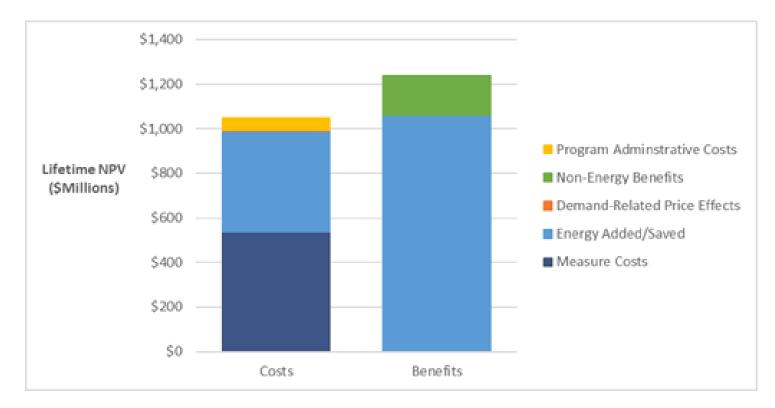
Key Assumptions

Category		Data	Sources	
RE Thermal Costs	Single family	See the paper	Program data in MA and CT	
	Multi-family	See the paper	Assumed certain economies of scale on SF projects	
	Commercial	See the paper	2012 MA DOER Heating and Cooling report except SHW	
Building	Thermal load	See the paper	EIA RECS and CBECS	
Program cost	Incentive amonts	Incentive levels in MA	MA CEC	
	Administrative cost	Ngrid EE program data	2016 Ngrid EE plan	
	ASHP	11 HSFP	NEEP	
	GSHP	4 COP	ENERGY STAR standard	
Performance	Solar	SRCC 13.7	Mass CEC average	
	Wood boilers	80 - 85 AFUE	Stakeholder feedback	
	Electricity supply	AESC 2015 values	AESC 2015	
	Natural gas supply	AESC 2015 values	AESC 2015	
Energy Avoided Cost	Electricity and gas distribution costs	Ngrid current tariff with an escalation rate for future costs	Ngrid tariffs	
	Fuel oil	RI OER based values	RI OER	
	Wood	Stakeholder feedback with AESC fuel escalation factor	Stakeholder feedback and AESC 2015	


Cost-Effectiveness Analysis

Rhode Island Total Resource Cost Test

Benefits	Costs
Avoided costs of fossil fuel use	Incremental cost of installed RT equipment (where appropriate),
Environmental compliance costs	Administrative costs of managing an RT incentive program
Market price effects	Added fuel and electricity costs of RT technologies
Non-energy benefits (improved home comfort and increased property values)	Market price effects associated with the added electricity costs


Benefits/costs: A score of 1 or greater is cost-effective. Less than 1 is not cost-effective.

Single Family Projects – TRC Results

Portfolio Level TRC Results

Sensitivity	Base Case	2013 Fossil	Reduced RT	Interaction
Scenario		Fuel Prices	Costs	of Effects
TRC Ratio	1.18	1.6	1.34	1.8

Rate and Bill Impact Analysis

Rate and Bill Impact Analyses

Program cost recovery: a system benefit charge (SBC) or similar charge is used to recover program costs. The same surcharge rate is assumed for the RES and COM sectors.

Rate impact

RT annual energy rates =

RT annual revenues RT annual sales

Where,

RT annual revenues = BAU revenues +/- expected system cost changes due to RT RT annual sales = Adjusted sales due to RT

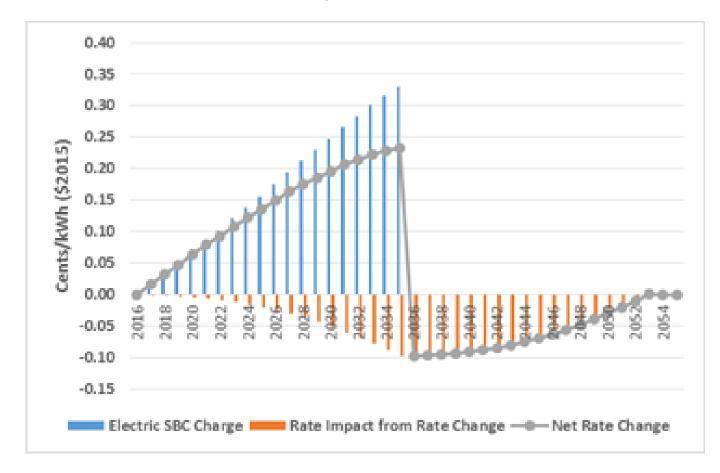
Bill impact

- Considers both changes in rates and changes in customers' consumption
- Better indication of a new policy's impact on customers.

Rate Impact Results

• Both electric and natural gas rate impacts from the RT program are negligible.

	Natural Gas	Electricity
Residential	0.5%	-0.3%
Commercial	0.1%	0.2%


Electricity Rate Impact: Residential

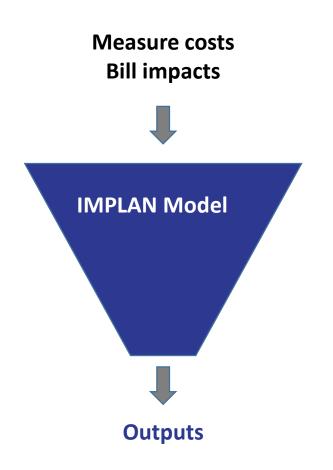
Residential electric rate impact results

Electricity Rate Impact: Commercial

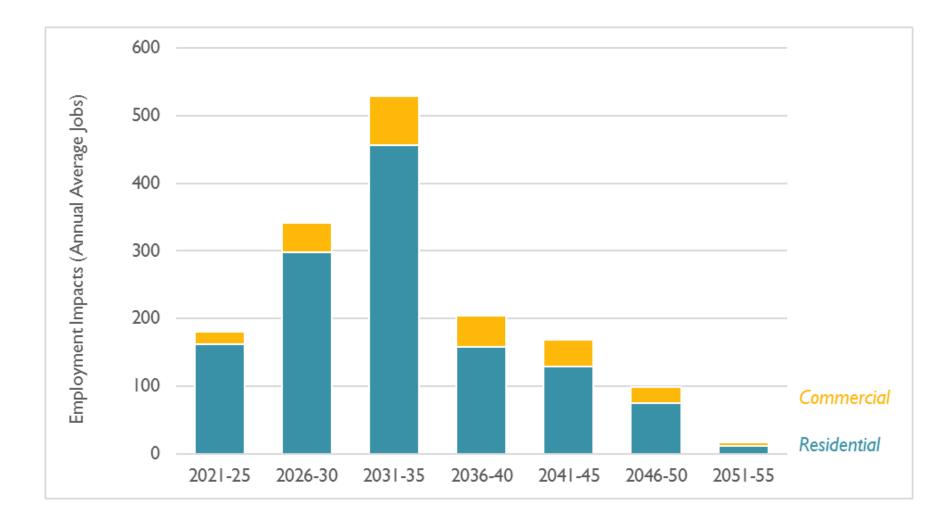
Commercial electric rate impact results

Bill Impact

Non-participant bill impact


	Natural Gas Bill		Electricity Bill		Combined Bill	
	%	\$ per year	%	\$ per year	%	\$ per year
Residential	0.5%	\$7	0.0%	-\$4	0.1%	\$3
Commercial	0.1%	\$4	0.2%	\$24	0.2%	\$28

Employment Impact Analysis


Analysis Approach

Outputs: increased labor from installing RT minus the reduction in labor from standard measures not installed as a result of the RT program.

- Direct impacts: installation labors
- Indirect impacts: equipment and services to support the HVAC installation
- Induced impacts: increased spending by workers and households

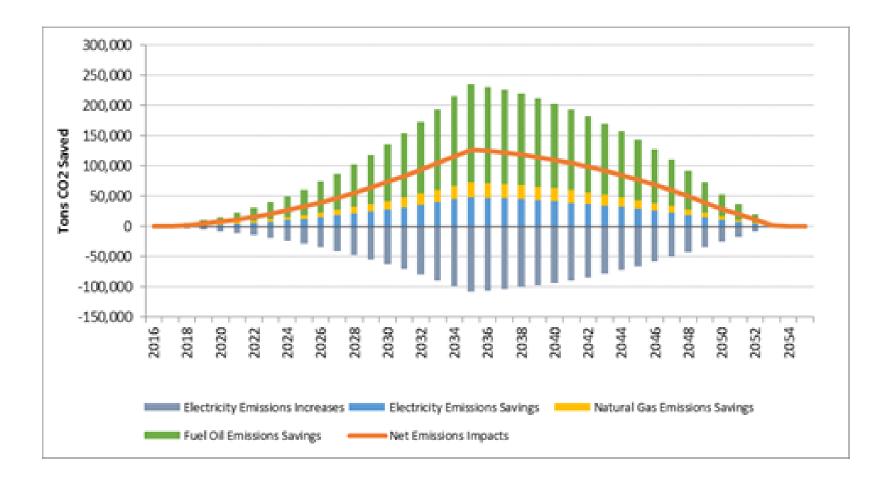
Local Job Impact Results

Emission Impact Analysis

Emission Impact Approach

• Scope:

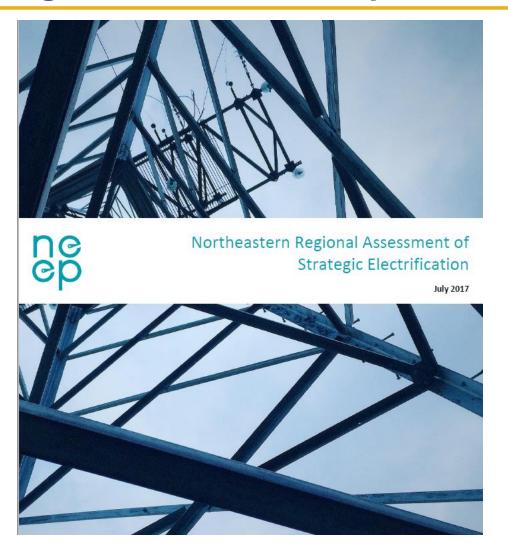
- Modeling of net CO₂ emission increases from increased electricity use (due to installation of ASHPs and GSHPs) and CO₂ reductions from decreased fossil fuel use (due to RT installations).
- CO₂ impacts from wood boilers are not modeled.


• Emissions from electricity:

- U.S. EPA's Avoided Emissions and Generation Tool (AVERT)
- AVERT developed by Synapse for U.S. EPA can estimate hourly emissions impacts for CO₂, SO₂, NO_x, and PM_{2.5} from reduced electricity loads due to clean energy programs.

• Emissions from natural gas and fuel oil:

• Emission factors from U.S. Energy Information Administration


Annual Emissions Impacts (Short Tons)

Further Research Topics

- a) Model new construction and major renovation for ASHP
- b) Update the cost assumptions
- c) Research potential cost improvements especially for ASHP and GSHP (See NYSERDA's RE Heating and Cooling Policy Framework report)
- d) Model large commercial buildings and include variable refrigerant flow (VRF) heat pump systems
- e) Model a larger-scale RT scenario that can really help achieve the state's GHG targets in 2035 and 2050 along with other policies (See NEEP Strategic Electrification report)

NEEP Strategic Electrification Report

Available at http://www.neep.org/strategic-electrification-regional-assessment

Thank you! Kenji Takahashi ktakahashi@synapse-energy.coom