1	STATE OF WISCONSIN				
2		DIVISION OF HEARINGS AND APPEALS			
3					
4					
5	In th	e Matter of the Wisconsin Pollutant			
6	Discl	narge Elimination System Permit	Case No. DNR-13-056		
7	No. V	WI-0000965-09-0 (WPDES Permit)			
8	Issued to Wisconsin Public Service				
9	Corp	oration (Pulliam)			
10					
11	In th	e Matter of the Wisconsin Pollutant			
12	Discl	harge Elimination System Permit	Case No. DNR-13-066		
13	No. V	WI-0000965-09-0 (WPDES Permit)			
14	Issue	ed to Wisconsin Public Service			
15	Corp	oration (Pulliam)			
10					
1/ 10		CODDECTED DDE EILED DIDECT TECTI	MONIV OF DACLIEL MULCONI		
10		ON RELATED THE C	MONTOF RACHEL WILSON		
19 20		ON DEFIALF OF THE 5	IERRA CLUD		
20					
21					
22					
23	Back	ground			
23	Duck	<u>Stouliu</u>			
24	Q.	What is your name and address?			
25	A.	My name is Rachel Wilson and I am a S	enior Associate with Synapse		
26		Energy Economics, Incorporated ("Syna	apse"). My business address is 485		
27	Massachusetts Avenue, Suite 2, Cambridge, Massachusetts 02139.				
28	О.	Please summarize vour educational ba	ckground and recent work		
29	~	experience.	0		
		I I I I I I I I I I I I I I I I I I I			
30	A.	At Synapse, I conduct research and wri	te testimony and publications that		
31		focus on a variety of issues relating to e	lectric utilities, including:		
32		integrated resource planning; federal ar	nd state clean air policies;		
33		emissions from electricity generation; e	nvironmental compliance		

1		technologies, strategies, and costs; electrical system dispatch; and
2		valuation of environmental externalities from power plants.
3		I also perform modeling analyses of electric power systems. I am
4		proficient in the use of spreadsheet analysis tools, as well as optimization
5		and electricity dispatch models to conduct analyses of utility service
6		territories and regional energy markets. I have direct experience running
7		the Strategist, PROMOD IV, PROSYM/Market Analytics, PLEXOS, and
8		PCI Gentrader models, and have reviewed input and output data for a
9		number of other industry models.
10		Prior to joining Synapse in 2008, I worked for the Analysis Group, Inc., an
11		economic and business consulting firm, where I provided litigation
12		support in the form of research and quantitative analyses on a variety of
13		issues relating to the electric industry.
14		I hold a Master of Environmental Management from Yale University and
15		a Bachelor of Arts in Environment, Economics, and Politics from
16		Claremont McKenna College in Claremont, California.
17		A copy of my current CV is attached as Exhibit 1 .
18	Q.	On whose behalf are you testifying in this case?
19	А.	I am testifying on behalf of the Sierra Club.
20	Q.	Have you testified previously before the Wisconsin Division of
21		Hearings and Appeals?
22	А.	No.
23	Q:	Have you testified as an expert in any previous administrative tribunals
24		or courts either by prefiled testimony, live testimony, affidavit or in
25		deposition in the last 5 years?
26	A:	Yes. The proceedings in which I have testified are listed below.

1	•	Oklahoma Corporation Commission (Cause No. PUD 201400229): Direct
2		testimony evaluating the modeling of Oklahoma Gas & Electric
3		supporting its request for approval and cost recovery of a Clean Air Act
4		compliance plan and Mustang modernization, and presenting results of
5		independent Gentrader modeling analysis. On behalf of Sierra Club.
6		December 16, 2014.
7	•	Michigan Public Service Commission (Case No. U-17087): Direct
8		testimony before the Commission discussing Strategist modeling relating
9		to the application of Consumers Energy Company for the authority to
10		increase its rates for the generation and distribution of electricity. On
11		behalf of the Michigan Environmental Council and Natural Resources
12		Defense Council. February 21, 2013.
13	•	Indiana Utility Regulatory Commission (Cause No. 44217): Direct
14		testimony before the Commission discussing PROSYM/Market Analytics
15		modeling relating to the application of Duke Energy Indiana for
16		Certificates of Public Convenience and Necessity. On behalf of Citizens
17		Action Coalition, Sierra Club, Save the Valley, and Valley Watch.
18		November 29, 2012.
19	•	Kentucky Public Service Commission (Case No. 2012-00063): Direct
20		testimony before the Commission discussing upcoming environmental
21		regulations and electric system modeling relating to the application of Big
22		Rivers Electric Corporation for a Certificate of Public Convenience and
23		Necessity and for approval of its 2012 environmental compliance plan. On
24		behalf of Sierra Club. July 23, 2012.
25	•	Kentucky Public Service Commission (Case No. 2011-00401): Direct
26		testimony before the Commission discussing STRATEGIST modeling
27		relating to the application of Kentucky Power Company for a Certificate
28		of Public Convenience and Necessity, and for approval of its 2011

1		environmental compliance plan and amended environmental cost
2		recovery surcharge. On behalf of Sierra Club. March 12, 2012.
3	•	Kentucky Public Service Commission (Case No. 2011-00161 and Case
4		No. 2011-00162): Direct testimony before the Commission discussing
5		STRATEGIST modeling relating to the applications of Kentucky Utilities
6		Company, and Louisville Gas and Electric Company for Certificates of
7		Public Convenience and Necessity, and approval of its 2011 compliance
8		plan for recovery by environmental surcharge. On behalf of Sierra Club
9		and Natural Resources Defense Council (NRDC). September 16, 2011.
10	•	Minnesota Public Utilities Commission (OAH Docket No. 8-2500-22094-
11		2 and MPUC Docket No. E-017/M-10-1082): Rebuttal testimony before the
12		Commission describing STRATEGIST modeling performed in the docket
13		considering Otter Tail Power's application for an Advanced
14		Determination of Prudence for BART retrofits at its Big Stone plant. On
15		behalf of Izaak Walton League of America, Fresh Energy, Sierra Club, and
16		Minnesota Center for Environmental Advocacy. September 7, 2011.
17	Q.	What is the purpose of your testimony?
18	А.	The purpose of my testimony is to present total cost estimates for
19		constructing and operating cooling towers at the Pulliam Plant, Units 7
20		and 8, owned by Wisconsin Public Service Corporation ("WPSC"). I also
21		discuss economic achievability of the cooling towers and the expected
22		impact on electric rates in WPSC's service territory.

1	Q.	What documents have you reviewed in preparing your testimony?		
2	A.	The documents I relied on in formulating my opinions are footnoted in the		
3		testimony below. Moreover, I have reviewed the prefiled direct testimony		
4		of Bill Powers, P.E., and Dr. Peter Henderson also filed on behalf of Sierra		
5		Club in this matter.		
6	Q.	Please summarize your conclusions.		
7	А.	My conclusions are as follows:		
8		1. A cooling tower for Pulliam units 7 and 8 would have minimal		
9		impacts on WPSC finances.		
10		2. A cooling tower for units 7 and 8 would have minimal impacts on		
11		WPSC rates.		
12		3. A cooling tower would have cost benefits to the commercial fishing		
13		industry compared to the current one-through cooling system used		
14		at Pulliam.		
15	<u>Impa</u>	act of WPSC Finances from Cooling Tower		
16	Q.	You are aware of Mr. Powers's testimony about the estimated installed		
17		cost of a 6-cell cooling tower for Pulliam Units 7 and 8?		
18	А.	Yes. I am relying on Mr. Powers's cost estimates for the basis of my		
19		opinion. Mr. Powers estimates the total cost of the 6-cell inline		
20		conventional cooling tower for units 7 and 8 to be \$14,190,000, and the		
21		total cost of the plume-abated conventional cooling tower to be		
22		\$17,770,000. Both estimates are in 2015 dollars.		
23				
24				

1	Q.	Did you rely on other opinions of Mr. Powers in formulating your
2		testimony related to the financial impact to WPSC?
3	А.	Yes. I relied on the following four other opinions offered by Mr. Powers in
4		my cost calculations:
5		1. The total capacity of Pulliam Units 7 and 8 is 200 MW.
6		2. The average capacity factor of the two units is 48 percent.
7		3. The average MISO wholesale energy price is \$32.9/MWh in 2013\$.
8		4. The closed cycle cooling retrofit at Pulliam would reduce the cooling
9		water flowrate at Units 7 and 8 to 110,000 gallons per minute (gpm).
10	Q.	Have you formulated an opinion on the total cost to WPSC of the
11		cooling tower technology proposed by Mr. Powers?
12	A.	Yes. In my opinion, the inline conventional cooling tower technology
13		proposed by Mr. Powers would have an estimated net present value
14		(NPV) of approximately \$15 to \$19 million, depending on the wholesale
15		price of energy in the MISO market. Those costs are presented in Table 1,
16		below.
17		Table 1. Net Present Value Cost of Inline Conventional Cooling Towers at Pulliam 7 and 8.

Table 1. Net Present Value Cost of Inline	e Conventional Cooling Tov	vers at Pulliam 7 and 8.
NPV (2015\$, millions, 2015-2035)	Wholesale energy price of \$35/MWh	Wholesale energy price of \$66/MWh
Capital Revenue Requirement	\$14	\$14
Tax depreciation	(\$3)	(\$3)
Cooling O&M Costs	\$2	\$2
Construction Outage Costs	\$0	\$2
Energy Penalty	\$2	\$4
Total	\$15	\$19

The plume-abated cooling tower technology would have an estimated NPVof approximately \$19 to \$22 million. Those costs are presented in Table 2.

NPV (2015\$, millions, 2015-2035)	Wholesale energy price of \$35/MWh	Wholesale energy price of \$66/MWh
Capital Revenue Requirement	\$17	\$17
Tax depreciation	(\$4)	(\$4)
Cooling O&M Costs	\$3	\$3
Construction Outage Costs	\$0	\$2
Energy Penalty	\$2	\$4
Total	\$19	\$22

looling Toward of Dullion

3

4 Q. What is the basis of that opinion?

5 А. These cost estimates include the capital costs, operating and maintenance costs, construction outage costs, and the energy penalty associated with 6 7 the cooling tower technology. I assume that construction of the cooling 8 towers occurs in 2015 with operation beginning in 2016, which is a "worstcase scenario" from a present-value cost perspective, as costs that are 9 10 incurred further into the future are lower in present-value terms. In reality, permitting and construction would require several years, causing 11 12 the present-value costs to be lower. NPV was calculated over a 21-year period, including one year for construction and 20 years of operation. Tax 13 14 depreciation was calculated on a 20-year straight-line basis using a tax rate 15 of 40.14 percent.¹

16 Additional detail on the cost components is described here:

¹ Wisconsin Public Service Corporation. Electric Cost of Service Study. Test year ended December 31, 2015.

- 1 1. *Capital costs*: The engineering cost estimate for constructing a cooling 2 tower at Pulliam is \$14,190,000 for a conventional tower and 3 \$17,770,000 for a plume-abated tower. I amortized these costs over the 20-year useful life of the tower using a nominal discount rate of 8 4 5 percent.² Capital costs are independent of energy production and thus 6 apply at any capacity factor. The resulting present value of capital cost 7 is \$14 million for a conventional tower and \$17 million for a plume-8 abated tower.
- 9 2. *Operating costs*: The operation and maintenance (O&M) costs of the 10 cooling towers were estimated by Mr. Powers. He assumes an annual 11 maintenance cost of \$45,000 per year and a cost for chemical treatment 12 at \$330/day. For the plume-abated cooling tower, Mr. Powers 13 estimates a periodic rebuild maintenance cost that occurs in Year 10 14 (2025) at 20-25 percent of the original cooling tower cost and Year 20 15 (2035) at 30 to 35 percent of the original cost. I used the upper bounds of these ranges, and included a periodic rebuild cost of \$1.4 million in 16 2025 and \$1.9 million in 2035.3 17
- 18 The present value of O&M costs was estimated at \$2 million for the 19 inline conventional tower and \$3 million for the plume-abated tower, 20 over the 20-year lives of the towers. These operating costs are also 21 independent of capacity factor.
- 22 3. *Construction outage costs*: A large portion of the actual construction
 23 of the cooling tower can occur while the generating units are still

² Wisconsin Public Service Corporation. WPSC-MI 2015 Rate Case. October 17, 2014 Filing. James Beyer Exhibit.

³ It is unclear from the testimony of Mr. Powers if the periodic rebuild maintenance cost applies only to the plume-abated tower, or also to the inline conventional tower. I have applied it only to the plume-abated tower; however, if the cost also applies to the conventional tower, I would expect total O&M cost to increase from \$2 million to \$3 million, and total NPV to change from \$15-19 million to \$16-\$19 million.

1	operating; however, there must be an outage period when the tower is
2	actually connected to the plant. As discussed by Mr. Powers, the EPA
3	estimates in the May 2014 final 316(b) Phase II Technical Development
4	Document that cooling tower retrofits at fossil plants require only four
5	weeks of outage beyond the annual maintenance outage. ⁴ During this
6	outage period, the plant operator avoids fuel and variable O&M costs
7	at the units, but also loses generation revenue during that period.
8	Lost generation is estimated to be about 69,120 MWh. Avoided O&M
9	costs were estimated based on 20 years of historical FERC Form 1 data
10	for Pulliam 7 and 8, and weighted based on the capacity of the units.
11	Non-fuel O&M costs were estimated to be approximately \$3.65/MWh
12	and fuel costs were estimated at \$20.30/MWh. Energy market revenue
13	was estimated at two different prices: 1) the Annual Energy Outlook
14	(AEO) Energy Market Module 2014 price of approximately \$66/MWh
15	in 2015; and 2) the average MISO market wholesale price reported by
16	Mr. Powers, converted to 2015 ^{\$5} and escalated by the compound
17	annual growth rate of .86 percent found in the price stream from AEO
18	- approximately \$35/MWh in 2015. Lost generation is valued at an
19	NPV of \$0.45-1.73 million, depending on the wholesale price for
20	energy. Those costs are shown in Table 3.

 ⁴ U.S. EPA, *Technical Development Document for the Final Section 316(b) Existing Facilities Rule, EPA-821-R-14-002*, May 2014, p. 8-34, Exhibit 8-11. Net Construction Downtime for Closed-cycle Retrofit.
 ⁵ To convert to 2015\$, I use an inflation rate of 3 percent, taken from: Wisconsin Public Service Corporation. WPSC-MI 2015 Rate Case. October 17, 2014 Filing. James Beyer Exhibit.

Table 3. Construction Outage Costs.		
Construction Outage (2015\$, millions)	Wholesale energy price of \$35/MWh	Wholesale energy price of \$66/MWh
Lost Revenue	\$2	\$5
Avoided O&M	\$2	\$2
Profit loss (lost revenue - avoided O&M)	\$ 1	\$3
Net cost (profit loss net of taxes)	\$0.45	\$1.73

3 4. *Energy penalty costs*: The installation of cooling towers leads to a small 4 loss of net generation at the Pulliam plant. Mr. Powers estimates that 5 "energy penalty" to be approximately 1.2 percent, which is equivalent 6 to 10,092 annual MWh. The annual generation penalty was then 7 multiplied by the wholesale electricity price projections for MISO to 8 estimate the lost revenue. The energy penalty results in NPV costs to 9 WPSC of approximately \$2-4 million, depending on the energy market 10 price.

11 Economic Achievability of Cooling Tower Costs

12 Q. Have you considered economic achievability of the costs of the cooling 13 tower technology proposed by Mr. Powers?

- 14 A. Yes. The costs of cooling towers at Pulliam 7-8 are certainly affordable for15 WPSC.
- 16 Q. What is the basis of your opinion?
- A. The Pulliam plant is owned by Wisconsin Public Service Corporation, a
 regulated utility. In 2014, WPSC held \$4.279 billion in total assets, received

1

1	operating revenues of \$1.683 billion, and reported \$138 million in net
2	income for the year. ⁶
3	WPSC's corporate parent is Integrys Energy Group, Inc., which also owns
4	Peoples Gas, North Shore Gas, Minnesota Energy Resources, and
5	Michigan Gas Utilities. In 2014, Integrys held \$11.282 billion in total
6	assets, received operating revenues of \$4.144 billion, and reported \$277
7	million in net income for the year. ⁷
8	As of June 2014, Integrys Energy Group, Inc. and Wisconsin Energy
9	Corporation have entered into a definitive agreement under which
10	Wisconsin Energy, a company valued at nearly \$15 billion in assets, ⁸ will
11	acquire Integrys in a cash and stock transaction valued at \$9.1 billion. The
12	merger is expected to be completed during the summer of 2015. Post-
13	merger, the combined company is "committed to accelerated investment
14	in Integrys territories, including their 5-year plan to invest up to \$3.5
15	billion in infrastructure and operational initiatives."9
16	It seems clear that a company of this magnitude can afford the \$15-19
17	million (inline conventional) or \$19-22 million (plume-abated) net present
18	value cost of a conventional cooling tower at Pulliam 7-8; the upper bound
19	of the cost range is slightly more than one percent of WPSC's annual
20	revenues.
21	These values represent the total NPV cost of the cooling tower
22	technologies. The annual revenue requirements associated with these net
23	present values are shown in Table 4.

⁶ Wisconsin Public Service Corporation. Form 10-K, United States Securities and Exchange Commission, Fiscal Year 2014. ⁷ Integrys Energy Group, Inc. Form 10-K, United States Securities and Exchange Commission, Fiscal Year

^{2014.}

 ⁸ Wisconsin Energy to acquire Integrys Energy Group. October 6, 2014 News Release.
 ⁹ Wisconsin Energy to acquire Integrys Energy Group. June 23, 2014 Fact Sheet.

1	Table 4. Annual Revenue Requirements Associated with Cooling Tower Installation.			
	A	nnual Revenue Requirement (2015\$, millions)	Wholesale energy price of \$35/MWh	Wholesale energy price of \$66/MWh
	Conv	entional Cooling Towers	\$1.60	\$1.95
2	Plume	e Abated Cooling Towers	\$1.92	\$2.28
Ζ				
3	Impa	act to Customer Rates		
4	Q.	Have you considered the i	mpact on rates if the t	echnology proposed by
5		Mr. Powers is selected?		
6	A.	Yes. Because the Pulliam p	plant is owned and ope	rating by a regulated
7		utility, the costs of cooling	towers would be passe	ed on to ratepayers in
8		WPSC's service territory. In	n my opinion, rates wil	l be impacted, but
9		increases will be minimal.	In general, I would exp	pect to see a rate impact
10		of approximately 0.2 percent	nt on average across al	l customer classes due t
11		the installation of the coolin	ng towers.	
12	Q.	What is the basis for your	opinion?	
13	A.	I have reviewed the most r	ecent cost of service stu	udy ¹⁰ and rate order for
14		WPSC by the Public Service	e Commission of Wisco	onsin. The authorized
15		revenue requirement in tha	it docket was just over	\$1 billion. ¹¹ The upper
16		limit for the annual revenu	e requirements for a co	ooling tower would be
17		just over \$2 million as show	vn in Table 4. These ad	ditional revenue
18		requirements would increa	se total revenue requir	rements by
19		approximately 0.2 percent,	leading to a similar pe	rcentage increase in
20		rates.		

¹⁰ Wisconsin Public Service Corporation. Electric Cost of Service Study. Test year ended December 31,

 ¹¹ Public Service Commission of Wisconsin. Application of Wisconsin Public Service Corporation for Authority to Adjust Electric and Natural Gas Rates. 6690-UR0123. Final Decision. December 18, 2014.

1 Cost Benefit to Commercial Fishing

16

- 2 Q. Have you formulated an opinion as to the benefit to commercial fishing 3 if the cooling tower is installed rather than the once-through cooling 4 system? 5 A. I believe that the installation of a cooling tower at Pulliam 7 and 8 would 6 result in a benefit to the commercial fishing industry. 7 Did you rely on the testimony of Dr. Henderson in formulating your Q. 8 opinions? 9 A. Yes. On page 10, lines 12-14 of his testimony, Dr. Henderson presents total 10 baseline impingement of fish at Pulliam 7 and 8, and states that "it must be assumed that 100 percent of the impinged fish die." On page 17, line 6 11 12 Dr. Henderson states that yellow perch form 9.2 percent of the total 13 number of fish impinged, and based on that testimony, I calculate the
- 14 number of yellow perch that are currently impinged at Pulliam 7 and 8.

15 Table 5. Estimated Annual Deaths of Yellow Perch Due to Impingement.

Yellow Perch Deaths Per Year Due to	12,917	5,717	18,635
% Yellow Perch			9.20%
Estimated Fish Killed	140,407	62,143	202,550
Impingement	Unit 8	Unit 7	Total

In his testimony, Dr. Henderson states page 14, lines 2-5: "(Y)ellow perch
are commercially important and are already in decline. Closed-cycle
cooling can reduce these losses to negligible levels and must therefore be
considered the control option of choice if aquatic life is to be conserved." I
thus assume that the cooling tower would result in 100 percent survival of
the fish that were previously impinged.

23 Q. What is your opinion on the economic impact to commercial fishing?

- A. A recent determination from the WDNR BPJ estimated the value per
 pound of yellow perch to be \$6.04/lb in 2009\$.¹² The average weight of an
 adult yellow perch is estimated to be between 0.18 and 0.38 pounds at
 three and five years of age, respectively.¹³ Assuming 100 percent survival
 of the yellow perch that were previously impinged, I estimate that the
 annual benefit of the surviving yellow perch is between \$22,809 and
 \$48,152 per year, depending on the weight of the fish, as shown in Table 6.
- 8 9

Table 6. Total Annual Value of Yellow Perch that are no Longer Lost to Impingement.				
Avoided Impingement	Value			
Yellow Perch Impingement Avoided	18,635			
Weight of Average Adult Yellow Perch (lbs)	0.18	0.38		
Cumulative Weight of Surviving Yellow Perch (lbs)	3,354	7,081		
Yellow Perch value/lb (2015\$)	\$6.80			
Total Annual Value of Surviving Yellow Perch (2015\$)	\$22,809	\$48,152		

I would expect the value to the commercial fishing industry to increase ifavoided entrainment were included in the calculation of benefits.

13 Q. Does this complete your testimony?

14 A. Yes.

¹² Wisconsin Department of Natural Resources, WPDES Permit Fact Sheet p. 19, Attachment A: BTA Determination for Bay Front Generating Station (Nov. 2009), Permit No. WI-0002-997-07-0. December 6, 2012.

¹³ The Wisconsin Department of Natural Resources estimates that the yellow perch may grow to an average weight of up to 0.68 lbs at an age of seven years. I believe that 0.18-0.38 pounds represents a conservative range by which to estimate the benefits to the commercial fishing industry. See: Mecozzi, Maureen. Yellow Perch. Wisconsin Department of Natural Resources, Bureau of Fisheries Management. PUBL-FM-710 08. August 2008. Available at: http://dnr.wi.gov/topic/Fishing/documents/species/yellowperch.pdf