

Toward Net Zero Emissions from Oregon Buildings – Emissions and Cost Analysis of Efficient Electrification

LBNL Webinar - End-Use Load Profiles for the U.S. Building Stock: Data Access and Use Cases

December 14, 2022

Kenji Takahashi

Synapse Energy Economics

- Founded in 1996 by CEO Bruce Biewald
- Leader for public interest and government clients in providing rigorous analysis of the electric power, natural gas, and transportation sectors
- Staff of 40+ includes experts in energy, economic, and environmental topics

Scope of the study

- Background: Oregon Governor's Executive Order No. 20-04 (EO 20-40) on GHG emissions reduction mandates:
 - At least 45 percent below 1990 emissions levels by 2035
 - At least 80 percent below 1990 emissions levels by 2050
- Overview: On behalf of Sierra Club, Synapse assessed the potential impact of two future scenarios in which Oregon meets its 2035 and 2050 goals by incorporating aggressive efficient building electrification initiatives
- Reference: Takahashi et al. 2022. Toward Net Zero Emissions from Oregon Buildings - Emissions and Cost Analysis of Efficient Electrification Scenarios. Synapse Energy Economics, Inc. for Sierra Club. Available at: https://www.synapse-energy.com/net-zero-emissions-oregon-buildings.

Scope of the study (cont')

Scenarios:

- Scenario 1: No fossil fuel equipment sales post 2030: accelerates adoption of electrification measures towards 100-percent market share by 2030
- Scenario 2: No fossil fuel equipment sales post 2025: accelerates adoption of electrification measures towards 100-percent market share by 2025

• End-uses:

Space heating, water heating, cooking, and clothes drying

Scope of the study (cont')

Analysis:

- Incorporated technology switching from inefficient electric resistance space and water heating systems to efficient electric heat pumps to reduce winter electric peak demand
- Projected energy and emissions impacts of electrification measure adoption using Synapse' Building Decarbonization Calculator (BDC)
- Estimated electric peak load impacts using NREL's EULP data and the associated economic impacts on electric and gas system operations and investments
- Estimated bill impacts and customer payback of residential electrification in two cities in Oregon

Statewide electricity consumption by end-use and scenario

Scenario 1: No fossil fuel equipment sales post 2030

Scenario 2: No fossil fuel equipment sales post 2025

Source: Takahashi et al. 2022. Figure 16.

High level summary of two building electrification scenarios

	2030 Sales Target Scenario	2025 Sales Target Scenario	
Executive Order 20-40	2035: 45 percent		
	2050: 80 percent		
CO₂e emissions reductions relative to 1990	2035: 3.3 million metric	2035: 3.9 million metric tons	
	tons (47%)	(56%)	
	2050: 6.8 million metric	2050: 6.9 million metric tons	
	tons (97%)	(98%)	
2050 energy consumption reductions	57.8. Tbtu (61%)	58.5 Tbtu (61%)	
relative to 2019			
Electricity consumption increase relative to 2019	2030: 1,340 GWh (10%)	2030: 1,580 GWh (12%)	
	2050: 1,720 GWh (13%)	2050: 1,700 GWh (13%)	

Source: Takahashi et al. 2022. Table ES-1.

Projections of winter peak loads by enduse category

Scenario 1: No fossil fuel equipment sales post 2030

Scenario 2: No fossil fuel equipment sales post 2025

Note: COM stands for commercial, and RES stands for residential.

Source: Takahashi et al. 2022. Figure 29.

Projected changes in hourly loads by end use - Scenario 1

Source: Takahashi et al. 2022. Figure 30.

Hourly Loads in 2050

Projections of electricity and gas system cost impacts

Source: Takahashi et al. 2022. Figure 33.

	2030	2040	2050	Total (net present value)
Scenario 1	-8	-145	-282	-1,088
Scenario 2	-55	-177	-290	-1,661

Source: Takahashi et al. 2022. Table 9.

Summary

- 1. Under Scenarios 1 and 2, Oregon's building sector can reduce significant GHG emissions by 47-56% by 2035 and 97-98% by 2050—well beyond the state's GHG reduction targets for 2050.
- 2. Building electrification will increase electric loads, but the expected growth rate is similar to the historical levels (0.5-0.6% per year).
 - Switching from electric resistance heating to heat pumps can play a critical role in keeping load growths down and reducing electrical system investments in Oregon.
- 3. The building electrification scenarios can save \$1 to \$1.6 billion of energy system investments in Oregon by avoiding a substantial amount of gas system operating costs and fuel costs.
- 4. NREL's end-use load profile (EULP) database was critical for estimating peak load impacts from building electrification in our study.

Contact info

Kenji Takahashi ktakahashi@synapse-energy.com