

A Guide to Electric Sector Modeling Tools

The Clean Power Plan, and Other Applications

February 23, 2016

Jeremy Fisher, PhD
Synapse Energy Economics

Fernando J. de Sisternes, PhD Argonne National Laboratory

Webinar Logistics

- The webinar is being recorded and will be circulated to all attendees, along with the slides
- All attendees have been muted on entry and will remain muted throughout the webinar
- Please send any questions on the content of the webinar to webinar@synapse-energy.com
- During the Q&A session, the panelists will answer written questions that have been sent to webinar@synapse-energy.com
- Please use the chat feature only to notify the host if you are having a technical issue with the WebEx software or audio
- Note that Mac users often have problems with audio, and should consider using the call-in option

Synapse Energy Economics

- Founded in 1996
- Leader for public interest and government clients in providing rigorous analysis of the electric power sector
- Staff of 30 includes experts in energy and environmental economics and environmental compliance
- Synapse experts perform operational and planning modeling analyses of electric power systems using industry-standard models as well as models built in house
- We evaluate long-term energy plans, Clean Power Plan compliance options, and the environmental and economic impacts of policy initiatives

Argonne National Laboratory Center for Energy, Environmental, and Economic Systems Analysis (CEEESA)

- 17 Staff members and 12 Postdocs, located at Argonne National Laboratory and the MIT Energy Initiative.
- Unique <u>systems analysis</u> approach, using state-of-the-art scalable modeling tools based on techno-economic optimization (both deterministic and stochastic) and agent-based models.
- CEEESA's research concentrates on the most pressing issues relative to the system-level integration of energy resources through:
 - Power systems analysis
 - Energy systems analysis (including buildings)
 - Environmental systems analysis

Motivation

```
How will I meet growth,
  hit energy efficiency and renewable energy targets,
    meet environmental constraints,
      while assessing a least cost compliance path for environmental regulations?
If I'm planning for the Clean Power Plan...
...should I go rate or mass?
 ...and should I auction or allocate allowances?
   on what basis? and to whom?
     ...and with whom should I trade?
...and how will these choices affect my operations?
If I'm conducting a resource plan...
...how do I take into account my neighbors?
 ...what about retiring resources?
   ... fuel price uncertainty?
```

Oh, and **stakeholders**. We need them too.

No single model or analysis structure. Different models for different purposes.

Agenda

- CPP CO₂ Demonstration Requirements
- Considerations in Choosing an Analysis
- Analysis Trade-Offs
- Production Cost Models
- Capacity Expansion Models
- Multi-Sector Models
- Non-Optimization Approaches
- Example Analysis Pathways
- Conclusions

Clean Power Plan CO₂ Performance **Projections and Demonstration Requirements**

Rate-based Compliance (lbs/MWh)

Subcategorized CO₂ Emission **R1** Rates

> Two specific nationwide emission rate limits for coal plants and NGCC plants

R2 State CO₂ Emission Rates

> Each power plant must meet the single state average (derived using the nationwide emission rate limits and the share of these resources in a given state)

R3 Different CO₂ Emission Rates

> The state allows some flexibility in individual power plant's emission rates, as long as the total rate matches the one created by EPA

Mass-based Compliance (tons CO₂)

M1 CO₂ Mass Goal for Existing Units

> A statewide emission cap is applied to existing fossii units. States must demonstrate that there is no "leakage" of generation to new fossil units

CO₂ Mass Goal for Existing Units **M2** with New Unit Complement

> A statewide emission cap is applied to all fossil units, existing or new.

State Measures: CO₂ Mass Goal **M3** for Existing Units

> A statewide portfolio of strategies is used to meet the EPA goal for emissions from existing units

State Measures: CO₂ Mass Goal **M4** for Existing and New Units

> A statewide portfolio of strategies is used to meet the EPA goal for emissions from existing and new units

Considerations in Choosing an Analysis

May need to represent:

- Market-based emissions reductions
 - Allowance and/or ERC trading, banking
- Impacts of renewables, integration into grid
- Impacts of efficiency, cost effective procurement
- Transmission constraints
- Interstate impacts (uncoordinated policies)
- Building blocks [if CPP-based]
 - EGU efficiency improvements
 - Generation shifting
 - FGU emissions limits
- Transparency
- Computational requirements
- Use of expert modelers

Analysis Trade-offs

	Production Cost Model	Capacity Expansion (Regional Scale)	Capacity Expansion (Utility-Scale)	Multi-Sector Model	Non- Optimization Approaches
Economic dispatch?	\checkmark	\checkmark	\checkmark	\checkmark	×
Chronological dispatch?	\checkmark	×	×	×	×
Unit Commitment?	\checkmark	×	×	×	×
Multi-state / regional scale?	\checkmark	\checkmark	×	\checkmark	\checkmark
Individual EGUs?	\checkmark	×	\checkmark	×	\checkmark
Can choose new resources?	×	\checkmark	\checkmark	\checkmark	×
Can retire non- economic resources?	×	\checkmark	\checkmark	\checkmark	×
Non-expert use?	×	×	×	×	\checkmark
Public data?	×	-	×	-	\checkmark
Fully auditable by public?	×	×	×	×	\checkmark

Analysis Trade-Offs

Historic Generation in Michigan Region

TRITE EXAMPLE

I have to get 100 people from Boston to New York in two days with four cars: an old van, a small sports car, a slower hybrid, and an electric car.

How should I arrange the trips?

Production Cost Model (PCM)

- Designed to determine least cost dispatch of a known set of resources
- High resolution, chronological dispatch
- EGU runtime constraints and transmission can be highly detailed
- Used to forecast hourly market prices, fuel consumption, expected cost of existing resources, operational constraints, & reliability concerns.

PROSYM, PLEXOS, PCI Gentrader, AURORAXMP, GE-MAPS

Generation in RFC Michigan Region (AEO, 2015)

Source: AEO 2015, Reference Case

TRITE EXAMPLE

Ten years from now, I expect that the transportation demand will double and gas prices will be higher.

Should I be investing in the regional rail system?

Regional-Scale Capacity Expansion Model

- Designed to determine least cost technology type buildout under policy and economic constraints
- Low temporal and spatial resolution
- Supply-curve dispatch during key hours
- Specific EGUs are not represented (generally)
- Used to forecast fuel trends in fuel consumption, technology uses and development, impact of policies on trends and long-term expectations

IPM, ReEDS, NEMS EMM, HAIKU

Regional vs. Utility Scale Capacity Expansion Model

Regional-Scale

- "Model plant" technology types
- Highly simplified transmission
- Broad regional coverage & interstate interactions

Utility-Scale

- Specific EGUs represented
- Opportunities for specific transmission
- Narrow geographic coverage

Generation in Michigan State

Source: MPSC/MDEQ CPP Ref Case, High Gas (2016)

TRITE EXAMPLE

Two years from now, I expect to transport 120 people in two days, and my van is broken.

Do I repair the van, or buy a bus?

Utility-Scale Capacity Expansion Model

- Designed to determine least cost unit buildout under policy and economic constraints
- Medium temporal resolution; high spatial resolution
- Supply-curve dispatch during typical week
- Specific EGUs represented
- Used to examine least-cost portfolio development for utilities and/or states; test new resource requirements; integrated resource planning

Strategist, System Optimizer, PLEXOS-LT, $AURORA_{XMP}$

Electricity Production

Economic activity

- •Regional Trade
- •International Trade

Energy Consumption

- RCI
- Transportation

Fuel Production

- •Oil / gas
- Coal
- Renewables

TRITE EXAMPLE

How will a change in transportation modes impact sales of seat warmers?

If I make nicer seat warmers, will more people stay in their cars instead of taking the train?

Multi-Sector Model

- Designed to find least cost technology buildout and consumption given constraints and inter-sector interactions.
- Low temporal and spatial resolution
- Little or no transmission representation
- Highly simplified supply-curve dispatch
- Technology types represented
- Used to examine impact of policies across sectors (e.g. fuel standards, emission standards, energy policies, economic policies)

MARKAL, NEMS (whole) EPPA, NewERA

 Purpose-built screening tools used for simple simulations or bookkeeping purposes

Non-Optimization Approaches

Transparent & user-friendly

Synapse CP3T

Example Analysis Pathways (I)

Screening Analysis

- Seeking **broad stakeholder engagement** no budget
 - Harness screening analysis, vet with stakeholders and utilities
 - Pros: Wide engagement, focused discussions
 - Cons: May not represent real policy outcomes or behavior, does not capture economic forcing, may over or underrepresent ease of compliance

- Ability to use utilities' model(s) with stakeholder control over assumptions, portfolio choices, and compliance routes
 - Begin with screening analysis for portfolio construction, test through utilities' production cost models
 - Pros: operationally sound outcomes, costs consistent with utility estimates, captures economic shifts (i.e. fuel prices, allowance prices)
 - Cons: May not capture economic portfolio development

Example Analysis Pathways (II)

- Proprietary model available, require EGU specificity
 - Begin with screening analysis to narrow options, develop portfolios in utility-scale capacity expansion model
 - Pros: Detailed analysis, seeks least cost solution, fewer user decisions.
 Identifies impacts at specific EGUs, allows for unit retirement as compliance solution.
 - Cons: May not pick up interstate impacts or wide allowance trading region. Limited runs available.

- Multi-state strategic compliance review
 - Test basic compliance options through use of regional capacity expansion models. (Use screening analysis to narrow options, refine outcomes with utility-scale CEMS)
 - Pros: Comprehensive analysis, seeks least cost solution. Captures interstate electricity and allowance trading.
 - Cons: May need to be fine-tuned to capture subtleties of regulations. Not unit-specific.

Conclusions

- Screening models are freely available, powerful stakeholder engagement tools
 - May substantially over or under-estimate costs of compliance
 - May contain significant undocumented implicit assumptions
- States may want to carve out space for utility-scale tools
 - Consistent with utility planning
 - Highly specific, detailed
 - Create plans that are cost effective, equitable, and achievable
- Cost of proprietary models (and/or services) pales in comparison to electric system revenues, costs of operation, and potential impacts of even marginal policy choices
- States may be able to leverage utility models, or seek cost-sharing opportunities to create effective regulations.

Questions?

webinar@synapse-energy.com

Jeremy Fisher, PhD

jfisher@synapse-energy.com

Fernando J. de Sisternes, PhD

ferds@anl.gov