

IRP Best Practices Stakeholder Perspectives

Indiana Utility Regulatory Commission Emerging Issues in IRP October 17, 2013 Jeremy Fisher, PhD. Principal Associate, Synapse Energy Economics

Synapse Energy Economics

- Analyzes economic and environmental issues in the electric and natural gas industries
- Founded in 1996
- Staff of 30 engineers, scientists, economists and policy experts in Cambridge, MA
- Focuses on electric industry resource planning and ratemaking. Emphasis on environmental compliance costs, role of efficiency and renewables, design and operation of wholesale electricity markets. Experts in computer simulation modeling of long-term demand, supply and prices.
- Provides reports, testimony, litigation and regulatory support
- Clients include energy offices, utility regulators, consumer advocates, environmental organizations and Federal agencies

Structure

IRP Collaboration Experiences

The Stakeholder Perspective of IRP and CPCN • Other state mechanisms

Lessons learned

- Purpose of an IRP
- Review of planning assumptions and red flags

Next steps

• Towards a productive collaboration

PacifiCorp (OR, UT, WY, ID, CA, WA)

- Stakeholder process
 - Open to public, staff, consultants
 - Starts one year in advance of triennial IRP, every 3 weeks
 - Meeting content driven by agenda and stakeholder interests
- Responsiveness
 - Comments on meetings summarized and distributed
 - Post-publication formal comment / reply comment
 - Formal oversight in Oregon only
- Docketed proceeding in Oregon with discovery

Hawaii Electric Company (HECO)

- Stakeholder process
 - Commission assigns independent evaluator
 - Open to public, staff, consultants
 - Starts one year in advance of triennial IRP, monthly
 - Evaluator presents recommendation to Commission
- Responsiveness
 - Comments and replies posted to evaluator's website
 - Evaluator keeps Company appraised of current status
 - Formal oversight through evaluator
- Discovery through evaluator

Tennessee Valley Authority (TVA)

- Stakeholder process
 - TVA-selected stakeholder groups
 - Starts one year in advance of triennial IRP, monthly meetings
 - Meeting content driven by agenda and stakeholder interests
- Responsiveness
 - Meeting minutes summarized and distributed
 - No formal reply process
 - No formal oversight
- No discovery process
 - FOIAs processed after 6+ months

Nebraska Public Power District (NPPD)

- Stakeholder process
 - No formal process, no oversight
 - Interaction with Company starts after IRP submission
- Responsiveness
 - Company reviews comments, submits off-year IRP update responsive to comments
 - Comments on IRP update incorporated into next IRP, iterative but post-hoc
- Company offered some confidential information via NDAs

Alaska Regional IRP

- Unique circumstance: state mandated & sponsored (AK Energy Authority)
 - To promote cooperation between linked coops
 - Recommendations only, no mandate
 - Guides AK state spending on infrastructure
- Stakeholder process
 - Open to utilities, public, agencies, & consultants
 - Ran for 5 months by B&V
 - Meetings every two weeks
 - Generally used public data only
 - Agenda driven through stakeholders
- Responsiveness
 - B&V responded via comments
- No formal discovery process.
- Little utility buy-in on process or outcome.

Massachusetts, Connecticut, and Rhode Island

- Deregulated
 - No IRP, but EE spending oversight through advisory council
- Stakeholder process
 - Advisory council membership assigned by legislation
 - Technical consultants hired by state to run process and models
 - Program administrators (i.e. utilities) are *ex* officio
 - Stakeholders vote on plan
- Responsiveness
 - Stakeholders run process completely
 - Final recommendations submitted to Commissions
 - Followed by docketed process to process recommendations
- All data and assumptions available to stakeholders

Lessons Learned

Transparency

Accountability

Responsiveness

Adaptability

- IRP requires stakeholder ability to vet assumptions and audit modeling; major input assumptions may not be sufficient
- Commission oversight (direct, staff, or evaluator) ensures all parties act in good faith
- Stakeholder time, effort, and input has no value if there is no response mechanism.
- Outcome is predetermined if assumptions and process are also predetermined

Purpose of an IRP The Stakeholder Perspective

- Adaptive management
 - Long-term strategy
 - Short-term actions and adjustments
- Information
 - Put all information on the table
 - Put all parties on the same page, no surprises
 - Vet mechanism for making short and long-term decisions
- An IRP is (usually) <u>not</u> a preapproval

Stakeholder Review of Electric Utility Planning

Synapse represents various stakeholders in IRP, CPCNs, pre-approvals and other planning cases.

What triggers an in-depth review?

Elements that:

- can affect a planning outcome,
- are complex or non-intuitive, or
- novel.

Load Forecast

How vulnerable is the utility to the departure of a major customer?

Death spiral:

Rates go up, major customers depart. Utility has to raise rates to support high fixed costs.

Commodity Prices

TVA 2012 Internal Planning

When was the commodity price developed? Is it fresh?

What is the source of the forecast?

How are multiple forecasts considered?

Commodity Prices

Hawaii Electric Company (HECO) 2013 IRP

Review of CO₂ price assumptions are critical.

Does price include "allowances," if so, what assumptions underlie those allowances? Does it rise faster than inflation? Or much, much slower?

Zero is a strong forecast.

Source: Hawaii Electric Company, 2013

Commodity Price Relationship

"World View" scenarios and stochastic analyses introduce a new form of uncertainty: <u>relationship between</u> <u>variables.</u>

Does analysis outcome depend on this relationship?

What is the basis of that relationship?

Source: KPCo / AEP (2011)

Commodity Price Relationship

"World View" scenarios and stochastic analyses introduce a new form of uncertainty: <u>relationship between</u> <u>variables.</u>

Does analysis outcome depend on this relationship?

What is the basis of that relationship?

KPCo Big Sandy Retrofit Stochastic Analysis Correlation Variables

Correlations provided by AEP in SCW-1, Table 1-4									
	Natural								
	Gas	Coal	Carbon	Power	Demand				
Natural Gas	1.00	0.09	(0.23)	0.88	0.66				
Coal	0.00	1.00	0.69	0.19	0.74				
Carbon	0.00	0.00	1.00	(0.14)	0.50				
Power	0.00	0.00	0.00	1.00	0.75				
Demand	0.00	0.00	0.00	0.00	1.00				

Analysis assumed strong relationship between stochastic gas price, power price, and demand.

			1						
	Natural Gas Price	Coal Price	Carbon Price	Power Price	Demand				
Natural Gas Price	1.00	0.11	(0.43)	0.41	(0.15)				
Coal Price		1.00	0.67	0.32	0.11				
Carbon Price			1.00	(0.43)	0.00				
Power Price				1.00	(0.51)				
Demand					1.00				
Europ		US Hypothesi							

With these assumptions, any cases with market or gas purchases becomes highly volatile (both upside and downside risk).

Difference (Company minus Synapse)

Synapse (for contrast only)

	Natural Gas Price	Coal Price	Carbon Price	Power Price	Demand	ir				
Natural Gas Price		-0.03	0.20	0.46	0.81	2				
Coal Price			0.01	(0.14)	0.63	a				
Carbon Price				0.30	0.50	W				
Power Price					1.26					
Demand										

Correlations were ncorrectly calculated and sourced; result was much lower risk.

Environmental Compliance Obligations

	2012	2013	2014	2015	2016	2017	2018	2019	2020		
Air Toxics	MATS Rule		Pre-complia	nce	Compliance	Extensions	Compliance with MATS				
Criteria Air	CSAPR Vacatu	<u>i</u> r		Develop rep	lacement ?		compliance	compliance			
Pollutants	Interim CAIR implementation										
	Develop & revise NSPS										
	Develop Revis	sed NAAQS (C	zone, PM _{2.5} , S	D ₂ , NO _x /SO ₂ , C	0)	Implement SIP provisions for Revised NAAQS					
Green	Compliance with Federal GHG Reporting										
House Gases	PSD/BACT, Title V apply to GHG emissions (new sources)										
	Develop GHG	NSPS	Pre-complia	nce period		Compliance with GHG NSPS					
Coal Ash	Develop Coat		Vastes Rule	Pre-complia	nce period ?						
Cooling Water	Develop Cool	ing Water Rul	Rule Pre-compliance period			Cooling Water phase-in					
Effluents	Develop Efflu	ent Limitatior	Guidelines	s compliance p	ohase-in						

Environmental Compliance Obligations

 Why can't we assume costs for finalized regulations only?

(i.e. Why should we consider NAAQS, CSAPR 2.0, coal combustion residuals, effluent limitation, cooling water rules or CO_2 ?)

Ignoring impending regulations assigns them a **zero** dollar cost.

Zero is an **absolute** forecast. It implies **100%** certainty that there will be **no** cost of compliance.

Alternative options include proxy costs or estimates.

Supply-Side Options

91.0% 72.5% 70.0% 85.0%

27.40

8,712 4,400 5,530 2,406

- Reasonable diversity of supply options?
 - Range of thermal types/sizes, renewable resources, demand reduction, efficiency, storage?
 - Purchase of existing assets?
 - Partial ownership?
 - Transmission options considered, if viable?
- Source and date of capital estimates. Learning curve for solar and wind?
- Capacity and energy markets included?
- Did the utility consider divesting resources? How?

				Net	Commercial	Design			Fixed	Average Full Load	
			Elevation	Capacity	Operation	Life	Base Capital	VarO&M	OM	Heat Rate (HIN	
	Fuel	Resource	(AFSL)	(MM)	Year	(ym)	(\$/kW)	(S/MWh)	(S/KW-yrt)	Btu/KWh)/Efficiency	
	Natural Gas	SOCT Aero x3, ISO	0	163	2016	30	1,081	3.50	9.00	9,729	
	Natural Gas	Intercool ed SCCT Aero x1, ISO	0	102	2016	30	1,004	2.92	15.23	8,967	
	Natural Gas	SOCT Frame "F" x1, ISO	0	208	2006	35	679	8.46	7.73	9,950	
	Natural Gas	IC Recipt x6, ISO	0	117	2006	30	1,204	7.40	15.61	8,447	
Vahla	Natural Gas	CCCT Dry "F", 2x1, ISO	0	609	2017	40	995	2.11	6.13	6,738	
Value	Natural Gas	CCCT Dry "F", DF, 2x1, ISO	0	138	2017	40	522	0.08	0.00	8,462	
	Natural Gas	CCCT Dry "G/H", 1x1, ISO	0	372	2017	40	971	2.53	10.70	6,966	
	Natural Gas	CCCT Dry "G/H", DF, 1x1, ISO	0	- 46	2017	40	612	0.08	0.00	8,262	
	Natural Gas	CCCT Dry "G/H", 2x1, ISO	0	746	2017	40	959	2.44	5.61	6,743	
IU	Natural Gas	CCCT Dry "G/N", DF, 2x1, ISO	0	96	2017	40	600	0.07	0.00	8,105	
•	Natural Gas	COLT Dry "1", Adv 1x1, 190	0	409	2018	40	901	2.20	9.13	6,495	
	Natural Gas	CCCT Dry "1", DF, Adv 1x1, ISO	0	40	2018	40	485	0.08	0.00	8,611	_
CV	Natural Gas	Intercooled SLLT Aero x1	1,500	99	2005	30	1,004	2.99	15.67	8,639	
	Natural Gas	SUCT Frame "F" X1	1,500	197	2005		089	8.71	7.97	9,900	
	Natural Gas	K Recpt x 6	1,500	112	2005		1,253	7.68	16.11	8,447	
	Natural Cas	COT De ITI DE DA	1,000	130	2000		100	0.00	0.00	0,738	
	Natural Gas	CCC1 DY 17, 06, 241	1,500	1.00	205		522	0.08	000	8,484	
	Natural Cas	COLLIDY GAR, 201	1,500	715 96	2017		1,000	0.07	0.00	6,773	
	Natural Cas	COT De 11 Adv Ivi	1,500	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2010		963	2.27	0.43	6,405	
	Natural Cas	COTT Dev ²¹² DE Advivi	1,500		2010		405	0.00	000	0,011	
00	Natural Gas	SOCT Aeroxil	4,250	144	2016	20	1,225	1.89	11.11	9,739	-
$\Gamma(G)$	Natural Gas	Intercooled SCCT Aero x1	4,250	91	2016	30	1,127	3.23	16.97	8,967	
ng	Natural Gas	SOLT Fome "F" x1	4,250	181	2016	35	752	9.45	8.67	9,950	
0	Natural Gas	K Redpt x6	4,250	100	2016	30	1,368	8.15	18.39	8,447	
	Natural Gas	CCCT Wet "F", 2x1	4,250	545	2017	40	1,304	2.87	8.58	6,605	
	Natural Gas	CCCT Wet "F", DF, 2x1	4,250	89	2017	40	490	0.32	0.00	7,901	
	Natural Gas	COUT Dry "F", Ix1	5,050	255	2017	40	1,253	2.57	13.94	6,815	
	Natural Gas	COLT Dry "F", DF, 1x1	5,050	48	2017	40	546	0.08	0.00	8,538	
2	Natural Gas	CCCT Dry "F", 2x1	5,050	523	2017	40	1,159	2.42	7.34	6,738	
)	Natural Gas	CCCT Dry "F", DF, 2x1	5,050	138	2017	- 40	522	0.08	0.00	8,482	
<u> </u>	Natural Gas	CCCT Dry "G/H", 1x1	5,050	300	2017	- 40	1,129	2.94	12.45	6,966	
-	Natural Gas	CCCT Dry "G/N", DF, 1x1	5,050	- 46	2017	40	612	0.08	0.00	8,262	
	Natural Gas	CCCT Dry "G/N", 2x1	5,050	640	2017	40	1,118	2.62	6.55	6,743	
	Natural Gas	CCCT Dry "G/N", DF, 2x1	5,050	96	2017	40	600	0.07	0.00	8,105	
nne	Natural Gas	CLUI DIV 17, NOV 141	5,050		2008		1,075	2.94	10.54	6,60	
0113	Natural Gas	CLUI DIY 17, DF, NOV SKI	5,050		2008		405	0.08	0.00	8,611	
	Natural Gas	SUPPRIME I	4,500		208	- 20	2,190	0.08	12.04	8,005	-
	Natural Cas	SOT Dama "C" v1	6,500	172	2005		1,109	10.00	013	9,957	
	Natural Cas	K Darlor vC	6 500		2016		1400	0.00	19/0	0.447	
	Natural Cas	COT De "GAP 241	6 500	617	2017	- E	1 150	2 02	6.00	6.743	
	Natural Gas	CCCT Dry "GAI", DF, 2x1	6,500	96	2017		600	0.07	0.00	8,105	
	Natural Gas	CCCT Dry "1", Adv 1x1	6,500	368	2018	40	1,110	2.62	10.08	6,495	
aanital	Natural Gas	CCCT Dry "1", DF, Adv 1x1	6,500	40	2018	40	485	0.00	0.00	8,611	
CADITAL	Coal	SCPC with CCS	4,500	526	2012	40	5,410	6.71	69.22	13,067	
JUDIU	Coal	SCPC without CCS	4,500	600	2027	40	2,992	0.96	40.65	8,106	
1	Coal	IGCC with CCS	4,500	466	2012	40	5,238	11.20	55.78	10,823	
	Coal	PC CCS retroff to S00 MW	4,500	-139	2029	20	1,100	6.30	74.52	14,372	
CURVA TOR	Coal	SOC WINDOWS	6.500	600	2002	-	618	2.25	64.30	13.345	-

1,500 4,500 6,500

4,500 4,500 4,500

4,500 4,500 4,500 4,500 4,500

PV Poly-Si Raed Tilt 22% CF

PV Poly-Si Single Tracking 25% CI PV Poly-Si Rued Tilt 28% CF

PacifiCorp 2013 IRP

Table 6.1 - 2013 Supply Side Resource Table (2012\$)

0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255

0.255

0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.255 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022

118 20.5 205.4 20.5 205.4

Market Prices

Energy market price forecasts guide value of existing resources and consumer risk of loss.

Are prices reasonable and consistent?

Midwest Utility "A" Rate Case

Source: Midwest Utility "A", 2012

Market Prices

Midwest Utility "B" CPCN

130 120 110 Market Capacity Price Forecast CT PPA: Real Levelized Capacity Price (\$/kw-year nominal) 100 90 Assumption of new, high 80 cost CT PPA in short term. 70 60 50 40 30 Low long-term capacity price assumes flush market. 20 10 0 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040

Capacity Price Assumptions

Capacity prices are company's estimate of risk of "going short".

Assumed payments for capacity can overwhelm an analysis.

Source: Midwest Utility "B", 2012

Optimization

- Was every reasonable portfolio combination considered?
- What was excluded, and why?
- Was every commodity price combination and regulatory requirement considered, or just a limited selection?

Optimization

Large number of unknown variables results in large number of runs.

(i.e. low-mid-high range on gas prices, coal prices, CO₂ prices, and environmental stringency results in 81 scenarios.)

Modeling one-off scenarios is embarrassingly parallel.

Incremental cost of computing power pales in comparison to annual investments.

Toward Automatic Management of Embarrassingly Parallel Applications

Inês Dutra¹, David Page², Vitor Santos Costa¹, Jude Shavlik², and

¹ Dep of Systems Engineering and Computer Science Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil {ines,vitor}@cos.ufrj.br ² Dep of Biostatistics and Medical Informatics, University of Wisconsin-Madison, USA {page,shavlik,mwaddell}@biostat.wisc.edu

Abstract. Large-scale applications that require executing very large numbers of tasks are only feasible through parallelism. In this work we present a system that automatically handles large numbers of experiments and data in the context of machine learning. Our system controls all experiments, including re-submission of failed jobs and relies on available resource managers to spawn jobs through pools of machines. Our results show that we can manage a very large number of experiments, results show that we can manage a very nege number of experimenta-using a reasonable amount of idle CPU cycles, with very little user intervention.

Large-scale applications may require executing very large numbers of tasks, say, thousands or even hundreds of thousands of experiments. These applications are only feasible through parallelism and are nowadays often executed in clusters of workstations or in the Grid. Unfortunately, running these applications in an unreliable environment can be a complex problem. The several phases of computation in the application must be sequenced correctly: dependencies, usually arising through data written to and read from files, must be respected. Results will be grouped together, a summarised report over the whole computation suns will be grouped together, a summarised report over the value comparison should be made available. Errors, both from the application itself and from the environment, must be handled correctly. One must check whether experiments

terminated successfully, and verify integrity of the output. Most available software for monitoring applications in parallel and distributed environments, and more recently, in grid environments, concentrate

on modelling and analysing hardware and software performance [8], prediction of lost cycles [9] or visualisation of parallel execution [12], to mention some Nost of them focus on parallelised applications. Few efforts have been spent on managing huge number of independent experiments and the increasing growth of interdisciplinary databases such as the ones used in biological or biomedical or intertweepimary queatoases such as the ones used in biological of biolication applications. Only recently, we have seen work in the context of the Grid such as

H. Kosch, L. Böszörményi, H. Heliwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 509–516, 2003.
Springer-Verlag Berlin Heidelberg 2003

Participant Roles in Productive IRP Planning

Utility

Stakeholders

Staff/PUC

- Continuously improve planning
- Responsive to stakeholder concerns
- Transparent as often as possible
- Use stakeholder input as a process audit

- Engage seriously, and at a technical level
- Realistic expectations
- Provide backstop and/or recourse for transparency, concerns
- Guide priorities