

Evaluating and Shaping the Impacts of EVs on Customers

Tools for Consumer Advocates

June 19, 2019

Bruce Biewald, Melissa Whited

Agenda

Background

1. Why the focus on EVs?

Evaluating

2. What are the impacts of EVs on **electric utility customers**?

3. What are the **broader public interest impacts** of transportation electrification?

- Shaping
- 4. What actions and policies can help maximize the benefits of EVs for all customers, including non-EV owners?

From our forthcoming publication: "Analyzing the Customer Impacts of Electric Vehicles: A Guidebook for Consumer Advocates"

Why EVs?

#1: They're coming

- EV sales increased by ~80% in 2018
- We need to have good policies in place to manage the additional load
- We need to make sure the benefits and costs are felt equitably

#2: Can significantly increase peak demand

#3: Potential for large customer benefits

Rate reductions for ALL customers

- More efficient use of grid capacity (spread out the fixed costs)
- Better use of low-cost renewables during off-peak hours
- Cost-effective way to meet state environmental goals

Lower total cost of ownership

- Reduced maintenance and fuel costs can save customers money
- Reduced public transit costs

Health and environmental benefits for all customers

- Lower criteria pollutants & mercury = reduced health impacts
- Reduced greenhouse gases

Evaluating the impacts

Evaluating the Impacts

- 1. What are the impacts of EVs on **electric utility customers** (particularly non-EV owners)?
 - Rate impacts
- 2. What are the **broader public interest impacts** of transportation electrification?
 - Health impacts
 - Economic impacts

Analysis tools, data

Utility system costs

 Production cost models, capacity expansion models, transmission and distribution planning studies

Rate impacts

• Revenue requirements, electricity sales, rate designs

Total cost of ownership

 Up-front costs, financing costs, rebates/incentives, fuel costs, maintenance costs

Health & pollution impacts

 Emissions from vehicles, emissions from electric grid, health impacts (BenMAP, COBRA)

Synapse's EV-REDI

- EV adoption curves
- Six types of EVs
- Electricity consumption from EVs
- Avoided fossil fuels
- Emissions

Intertwined impacts

- When do EVs charge?
- Additional generation, T&D?
- Which generation resources are deployed?
- What is the impact on rates?
- What's the cost to charge EVs?
- What's the total ownership cost?
- How do emissions change?

Setting up the analysis

- Analysis timeframe
 - 10-15 years, or longer
- EV adoption scenarios
 - E.g., High/med/low
- EV charging scenarios
 - E.g., TOU vs. flat rates
- Ratepayer-funded EV programs

Example Results

How do rates change over time?

 What are the health impacts relative to BAU?

	Avoided Deaths	Avoided Work Loss Days	Monetized Health Impact (2018 \$M)	
Med EV Scenario	20	8,600	\$178	
High EV Scenario	90	44,000	\$920	

What are the cost of ownership impacts?

	Low EV -	Med. EV &	Med EV &	High EV &	High EV &
	BAU	Flat Rates	TOU Rates	Flat Rates	TOU Rates
Car	-\$3,700	-\$3,100	-\$3,600	-\$3,100	-\$3,700
SUV	-\$7,000	-\$5,900	-\$7,000	-\$6,000	-\$7,000
Bus	-\$139,300	-\$114,500	-\$137,600	-\$116,900	-\$139,300

Policies to shape transportation electrification

Maximize benefits while minimizing costs

Promote equitable distribution of the benefits

1. Policies to maximize benefits & minimize costs

Implement sound rate design principles

- Shift new EV load toward the least-constrained hours, minimizing the costs that are imposed on the utility system and maximizing the positive impact that increased energy sales have on rates and bills.
- Time-of-use rates, critical peak pricing, etc.
- Designing rates is not enough must ensure enrollment

Use demand response programs

- Reduce peak demand
- Help balance supply and demand to optimize the use of zero-emitting resources or to avoid use of expensive or highly polluting peak resources.

1. Policies to maximize benefits & minimize costs (cont.)

- Site public charging infrastructure in locations that minimize the need for distribution system upgrades.
 - Are utilities providing this information to charging station developers?
- Ensure costs of ratepayer-funded EV programs do not outweigh benefits
 - Leverage other funding sources where possible
 - Ensure utility investments are providing value, not redundant
 - Collaboration in program design among utilities, consumer advocates, other government agencies can lead to greatest benefits
 - E.g., federal funds for transit electrification

2. Promote equitable distribution of the benefits

Design utility EV incentives to benefit low-income customers

- Low-income customers may not be able to take advantage of tax incentives
- Up-front rebates more helpful for low- & moderate-income customers
- Incentives can target lower cost EVs, used EVs, or vehicle leases (as opposed to only new car purchases)
- Income guidelines to provide larger rebates for those with lower incomes
- Collaborative process with underserved communities
 - What are their specific needs?
 - Varies by community
 - O Do they want to own/lease vehicles? Or is transit a better option?

2. Promote equitable distribution of the benefits

Direct EV investments to services relied on by lower-income customers

- Target services that low-income or non-driving customers may rely on, such as public transit, school buses, mobility services
- Public charging infrastructure that serves multi-unit dwellings, mobility service drivers, and low-income areas.
- Ride-hailing services (Uber/Lyft):
 - Drivers disproportionately low-income
 - Lower operational costs can benefit underserved communities

Electrify vehicles with greatest health impacts in lower-income communities

- School buses, yard trucks at ports, delivery trucks in urban areas, or heavy trucking on freeways
- Ride-hailing vehicles

Real world example

California

- By far the most EVs in the country
 - Approximately half of EVs in the United States
 - Nearly 10% of new cars purchased are EVs
- Commission requires utilities to report data regarding EV customer load profiles and system upgrades to accommodate EVs
- EV TOU rates have effectively encouraged off-peak charging in California
 - 85% 90% of charging on TOU rates is off-peak
 - Only ~25% of EV drivers are on TOU rates currently.
- From 2011-2018, only one out of every 670 EVs (0.01%) has resulted in a distribution system or service line upgrade.

California

- To date, EV drivers have provided far more revenues than costs
 - Most drivers currently paying high tiered rates
 - But finding holds if we assume 75% of EV drivers pay mostly low, off-peak rates

Contact

Melissa Whited Synapse Energy Economics

617-661-3248 mwhited@synapse-energy.com www.synapse-energy.com

About Synapse Energy Economics

- Synapse Energy Economics is a research and consulting firm specializing in energy, economic, and environmental topics. Since its inception in 1996, Synapse has grown to become a leader in providing rigorous analysis of the electric power sector for public interest and governmental clients.
- Staff of 30+ experts
- Located in Cambridge, Massachusetts