

Renewables Integration and the Clean Power Plan

August 26, 2015

Patrick Luckow

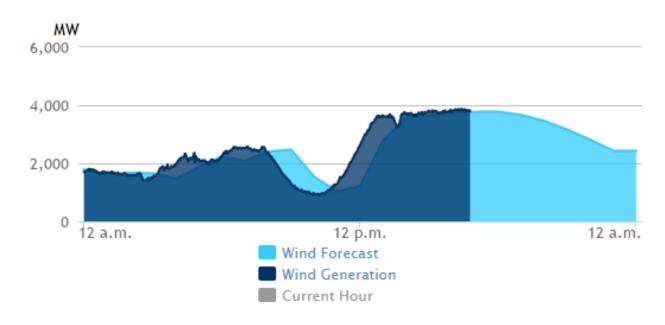
Tommy Vitolo, PhD

Webinar Logistics

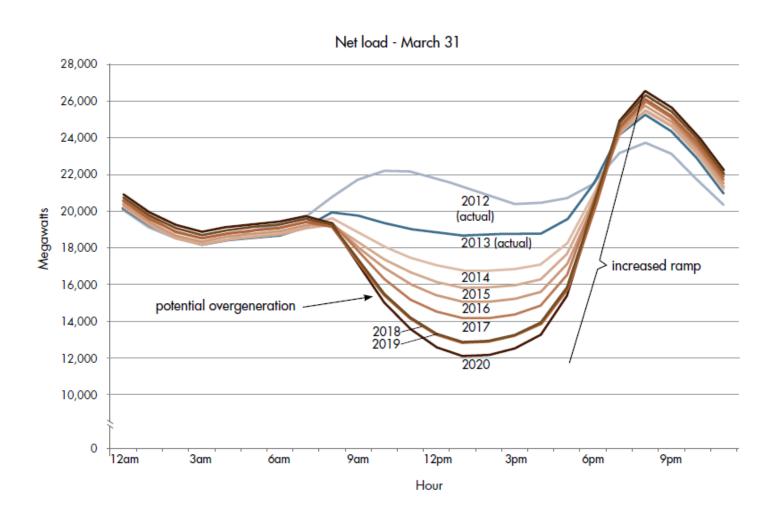
- The webinar is being recorded and will be circulated to all attendees, along with the slides
- All attendees have been muted on entry and will remain muted throughout the webinar
- Please send any questions on the content of the webinar to webinar@synapse-energy.com
- During the Q&A session, the panelists will answer written questions that have been sent to <u>webinar@synapse-energy.com</u>
- Please use the chat feature only to notify the host if you are having a technical issue with the WebEx software or audio

Synapse Energy Economics

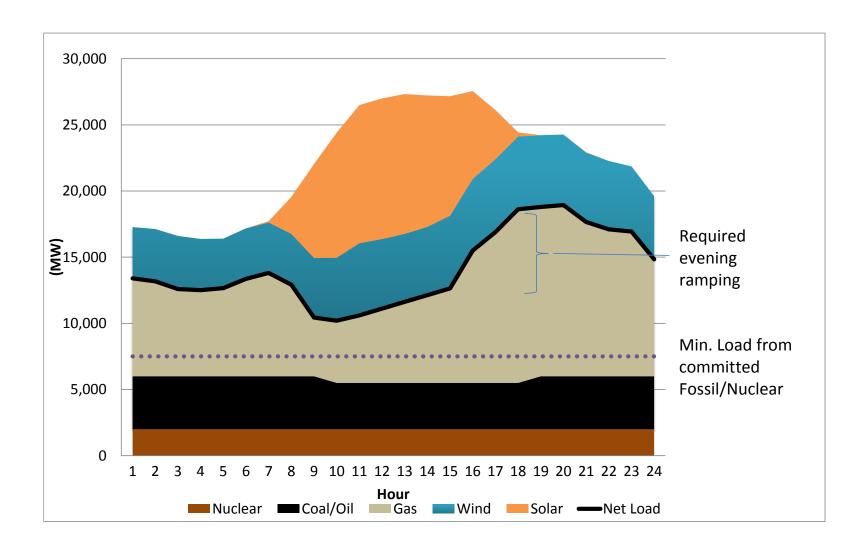
- Founded in 1996 by CEO Bruce Biewald
- Leader for public interest and government clients in providing rigorous analysis of the electric power sector
- Staff of 30 includes experts in energy and environmental economics and environmental compliance
- We gratefully acknowledge the Environment, Economics, & Society Institute (EESI) for sponsoring this webinar


CPP Assumes Significant Renewable Energy Potential

- In target-setting for the Clean Power Plan, EPA assumed a quadrupling of renewable energy production by 2030 from 2012 levels
 - 70% of that growth comes from wind
 - 25% comes from solar (mostly PV)
- Does this pose a challenge for the grid?


How is Renewable Energy Different?

- Wind and solar fluctuate throughout the day
 - Forecasts have improved significantly, but are still uncertain
 - Even with full certainty, new operational challenges

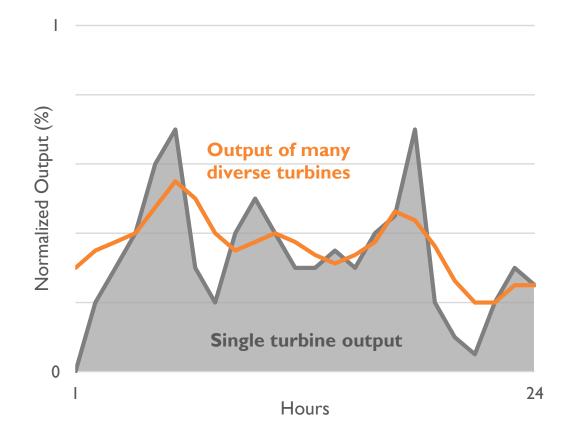

PJM Renewable Dashboard

California Spring Net Load

Representative Hourly System Dispatch

Minimum Loads and Operational **Constraints**

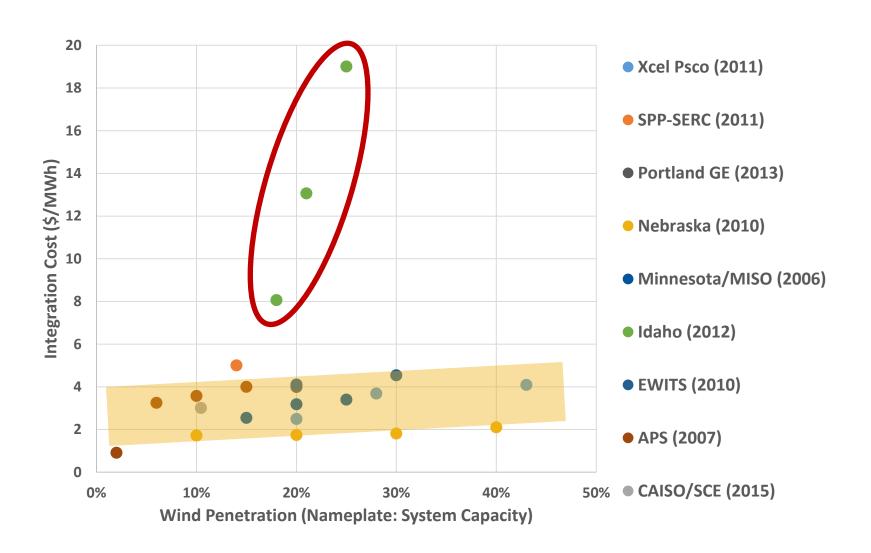
- Many plants have minimum power outputs between 40% and 60%, but some new plants can go even lower (20%?) and start up faster after being entirely offline
 - Thermal and mechanical constraints
- Ramp availability: how much capacity is available to come quickly online (or be turned down)
 - A function of capacity that is online—if plants are online at 75% of their max, they have more ramp potential than if at 100%
 - New plants can increase output more quickly—similar thermal and mechanical constraints


Measures to Incorporate More Renewables: Balancing Area Cooperation

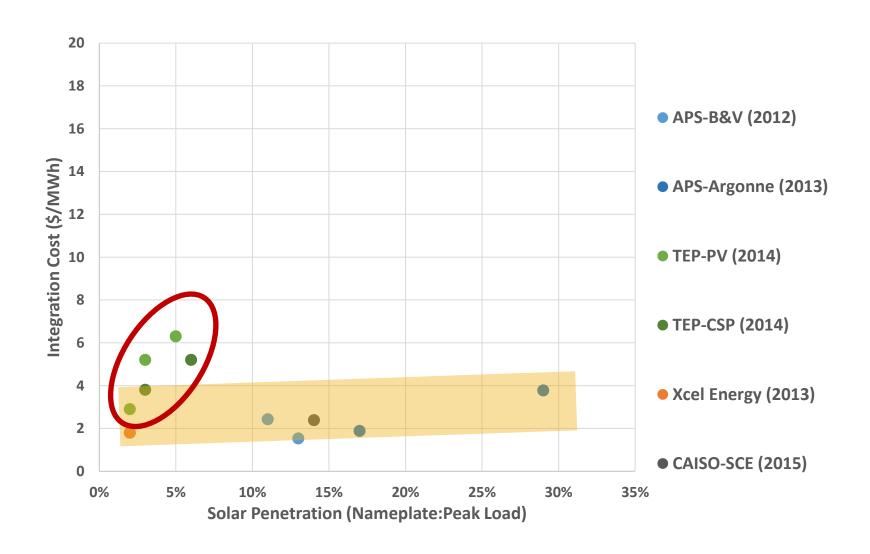
- Increase exports or imports on a finer level of temporal resolution—much of this scheduling has historically been done at the day ahead with little flexibility
- "Coordinated Transaction Scheduling"

Measures to Incorporate More Renewables: Geographic Diversity of RE Resources

 Resources spread over a wider area dampen major swings due to changing weather patterns

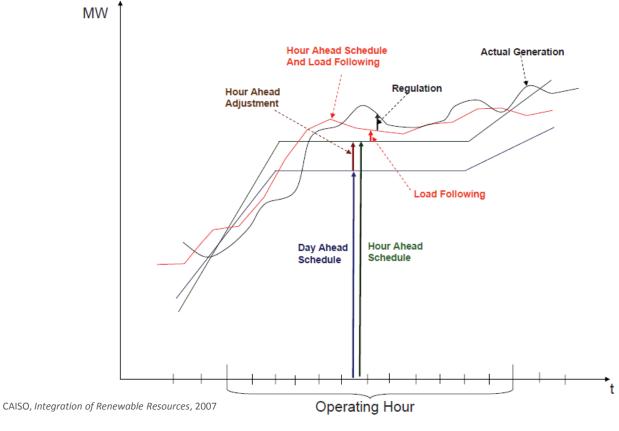


Measures to Incorporate More Renewables: Other Measures


- At conventional thermal plants
 - Improved flexibility
- At control centers (or planning)
 - Better control of contracted resources
 - Incremental transmission investments
- At load
 - Demand response (and improving demand response products)
 - Time-of-use rates

Please remember to send any questions on content during the webinar to webinar@synapse-energy.com

Integration Costs: Wind Results



Integration Costs: Solar Results

Integration Costs: Which Costs?

Wind and solar integration costs are costs incurred in *operational* timeframes that can be attributed to the variability and uncertainty introduced by wind and solar generation.

Integration Costs: Costs Included

Wind and solar integration costs are costs incurred in operational timeframes that can be attributed to the variability and uncertainty introduced by wind and solar generation.

- Temporal variations
 - Regulation
 - Load Following
- Operating reserves
 - Spinning
 - Non-spinning
 - Supplemental

- Unit commitment
 - Startup and shutdown
 - Day-ahead fuel procurement
 - Difference in generating costs
- Transmission
 - Line loss variation
 - Hurdle rates

Integration Costs: Costs Excluded

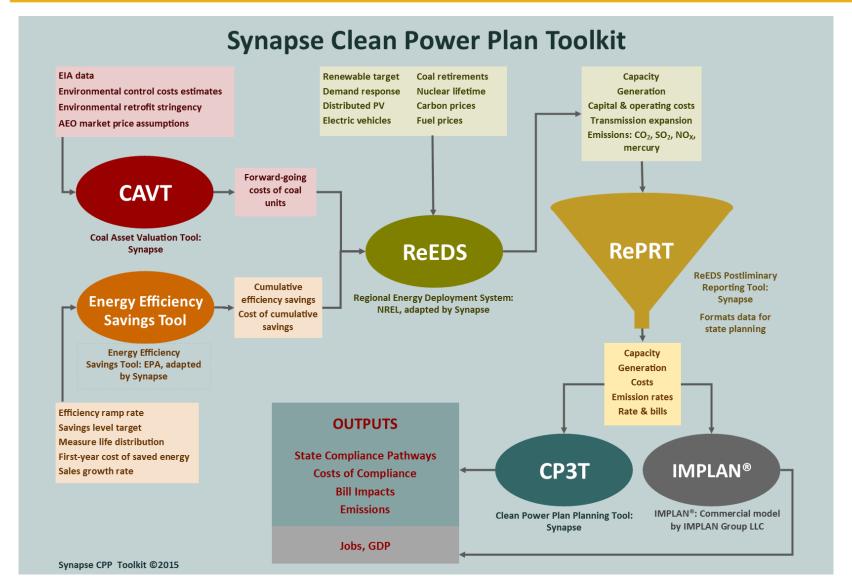
Wind and solar integration costs are costs incurred in operational timeframes that can be attributed to the variability and uncertainty introduced by wind and solar generation.

- Capital costs, incurred or avoided
 - Wind turbines
 - Combustion turbines
 - Fossil retrofits
 - Transmission

- Operating costs not the result of variability or uncertainty, incurred or avoided
 - Dispatch
 - Losses
 - Ancillary services

Wind Integration Costs: Sensitivities

The \$/MWh integration costs associated with wind and solar are sensitive to a number of inputs.


	APS 2007	CA 2010	EWITS 2010	ID 2012	MN 2006	MN 2014	NE 2010	NREL 2012	PacifiCorp 2014	PGE 2013	SCE 2013	SPP-SERC 2011	Xcel PSCo 2011
Penetration of intermittent resource	✓	✓	✓	✓	✓	✓	✓				✓	✓	✓
Forecast error	✓	✓								✓			
CO ₂ price forecast			✓										✓
Natural gas price forecast								✓		✓			✓
Other capacity resources						✓							✓
Transmission			✓	✓		✓	✓					✓	
Hydro		✓		✓		✓							
Reserve requirements					✓			✓	✓		✓	✓	

Solar Integration Costs: Sensitivities

The \$/MWh integration costs associated with wind and solar are sensitive to a number of inputs.

	APS 2012	Argonne 2013	NREL 2012	SCE 2013	Xcel PSCo 2013
Penetration of intermittent resource	✓	✓		✓	
Variability of intermittent resource	✓				
Forecast error		✓			
Natural gas price forecast	✓	✓	✓		✓
Other capacity resources		✓			
Reserve requirements		✓	✓	✓	

Synapse Clean Power Plan Toolkit

Related Resources

Renewable Integration Report and Factsheet: http://synapse-energy.com/project/renewable-energy-integration-costs

Synapse Clean Power Plan Toolkit: http://synapse-energy.com/CleanPowerPlan

Past Clean Power Plan Webinars: http://synapse-energy.com/synapse-projects-and-webinars-related-clean-power-plan

Consumer Costs of Low-Emissions Futures Factsheets and Reports: http://synapse-energy.com/project/consumer-costs-low-emissions-futures

Clean Power Plan Reports and Outreach for National Association of State Utility Consumer Advocates: http://synapse-energy.com/project/clean-power-plan-reports-and-outreach-national-association-state-utility-consumer-advocates

Synapse Blog Posts on Clean Power Plan: http://synapse-energy.com/tags/clean-power-plan

Stay Tuned!

Synapse is offering a series of webinars related to the final Clean Power Plan rule, updates to our compliance model, and impacts of the rule on consumer bills.

- September 3: "Brief #3: Modeling the Final Rule"
- September 8 (tentative): "Updates to Synapse's CP3T"

Contact Information

Patrick Luckow, pluckow@synapse-energy.com
Tommy Vitolo, tvitolo@synapse-energy.com

Jeannie Ramey (EESI), jr@eesi.us

Please remember to send any questions on content during the webinar to webinar@synapse-energy.com