



Carbon Dioxide Emissions Costs and Electricity Resource Planning

New Mexico Public Regulation Commission Case No. 06-00448-UT March 28, 2007 Presented by Anna Sommer and David Schlissel

### Background

- There is increasing acknowledgement of climate change from industry and government and that emissions from fossil fired power plants are a major contributor.
- Federal regulation of CO<sub>2</sub> emissions is now a question of when, not if.
- Significant reductions will be required.
- Imprudent for a utility to evaluate future resource options without fully considering carbon risks.

#### Uncertainty in Many Resource Planning Assumptions Example: Natural Gas Prices



www.synapse-energy.com | ©2006 Synapse Energy Economics Inc. All rights reserved.

### How to Make CO<sub>2</sub> Costs *Not* Count In Resource Planning

- 1. Too uncertain! assume that CO<sub>2</sub> costs will be zero throughout 40-60 year operating lives of proposed generating facilities.
- 2. Assume CO<sub>2</sub> costs only as sensitivity analyses not in base case studies.
- 3. Assume only a single  $CO_2$  price trajectory, not a range of possible  $CO_2$  prices.
- 4. At best, only a few non-carbon emitting resources are made available for model to select.
- 5. Avoided costs for energy efficiency don't reflect the cost of  $CO_2$  regulations.
- 6. Assume CO<sub>2</sub> prices do not reflect any increases, over time, of the stringency of regulation.
- 7. Assume delayed adoption or implementation of  $CO_2$  regulations, e.g., not starting until 2015.
- 8. Focus on decreasing carbon intensity (lbs per MWh) instead of reducing overall  $CO_2$  emissions.
- 9. Assume that new units will be grandfathered.

#### Current Synapse CO<sub>2</sub> Price Forecast

- Developed in the Winter and Spring of 2006.
- Based on several factors including analyses of four bills proposed in Congress prior to 2006 and a proposal from the National Commission on Energy Policy.

| Policy proposal                  | Analysis                        |
|----------------------------------|---------------------------------|
| McCain Lieberman – S. 139        | EIA 2003, MIT 2003, Tellus 2003 |
| McCain Lieberman – SA 2028       | EIA 2004, MIT 2003, Tellus 2004 |
| Greenhouse Gas Intensity Targets | EIA 2005, EIA 2006              |
| Jeffords – S. 150                | EPA 2005                        |
| Carper 4-P – S. 843              | EIA 2003, EPA 2005              |

#### Factors that Affect Future Carbon Emissions Policy Costs

- "Base case" emissions forecast
- Complimentary policies
- Policy implementation timeline
- Reduction targets
- Program flexibility
- Technological progress
- Emissions co-benefits

## The Current Synapse CO<sub>2</sub> Price Forecast



Synapse's Levelized Carbon Price Forecast (2005\$/ton)

| ę | Low    | Mid     | High    |
|---|--------|---------|---------|
|   | Case   | Case    | Case    |
|   | \$7.80 | \$19.10 | \$30.50 |

#### Examples of the Impact of Current Synapse CO<sub>2</sub> Price Forecast on Costs of Fossil Supply Options

| For a new plant online in 2011          |         |          |         |  |
|-----------------------------------------|---------|----------|---------|--|
| Supercritical Combi                     |         | Combined | N.      |  |
|                                         | PC      | Cycle    | IGCC    |  |
| Size (MW)                               | 600     | 600      | 535     |  |
| CO <sub>2</sub> (Ib/MMBtu)              | 208     | 110      | 200     |  |
| Heat Rate (Btu/KWh)                     | 9,369   | 7,400    | 9,612   |  |
| CO <sub>2</sub> Low Price (2005\$/ton)  | 7.8     | 7.8      | 7.8     |  |
| $CO_2$ Mid Price (2005\$/ton)           | 19.1    | 19.1     | 19.1    |  |
| CO <sub>2</sub> High Price (2005\$/ton) | 30.5    | 30.5     | 30.5    |  |
| CO <sub>2</sub> Low Cost per MWh        | \$7.60  | \$3.17   | \$7.50  |  |
| $CO_2$ Mid Cost per MWh                 | \$18.61 | \$7.77   | \$18.36 |  |
| CO <sub>2</sub> High Cost per MWh       | \$29.72 | \$12.41  | \$29.32 |  |

Proposed Big Stone II Coal-Fired Generating Unit – 600 MW at an average 88% annual capacity factor

- Low Synapse CO<sub>2</sub> Price Forecast 4,856,000 MWh  $\cdot$  \$7.74/MWh = \$37,585,440 per year
- Mid Synapse CO<sub>2</sub> Price Forecast 4,856,000 MWh · \$19.60/MWh = \$95,177,600 per year
- High Synapse CO<sub>2</sub> Price Forecast 4,856,000 MWh  $\cdot$  \$30.39/MWh = \$147,573,840 per year

- Proposals in Congress have become much more aggressive since early 2006 - would require greater CO<sub>2</sub> emissions reductions.
- Estimates of the CO<sub>2</sub> allowance prices at which carbon capture and sequestration technologies would become cost-effective.
- State initiatives create pressure for stringent federal regulation e.g. California.

### Bills in the 109<sup>th</sup> Congress



# Bills in 110<sup>th</sup> Congress are more aggressive than the bills used to develop Synapse CO<sub>2</sub> price forecast





 Most aggressive proposal prior to May 2006 was capping emissions at 1990 levels. Most proposals now are looking at reductions of 60-80 percent below 1990 levels.

# Utility CO<sub>2</sub> price forecasts do not reflect current bills being discussed in Congress

- FPL
  - Bingaman's 2006 Discussion Draft
  - Carper 2006 (S.2724)
  - Feinstein 2006 Draft
  - McCain-Lieberman 2005
- Duke
  - Bingaman 2006 Draft
- AEP
  - Carper 2003 (S.843)
  - McCain-Lieberman 2003 (S. 139)
- As a result, utility CO<sub>2</sub> price forecasts are too low and do not adequately reflect real risks of CO<sub>2</sub> regulation.

## 2007 FPL CO<sub>2</sub> price forecast

Comparison of FPL CO<sub>2</sub> Forecast to Synapse Forecast



## Duke January 2007 CO<sub>2</sub> price forecast



# Estimates of the CO<sub>2</sub> Prices at which CCS technologies would become cost-effective

- \$30/ton 2007 MIT Study, "The Future of Coal – Options for a Carbon-Constrained World"
- \$15-\$75/ton CO<sub>2</sub> net captured Intergovernmental Panel on Climate Change, "Carbon Dioxide Capture and Storage"
- \$45/ton Global Energy Technology Strategy Program, "Carbon Dioxide Capture and Geologic Storage



| STATE                  | GHG REDUCTION GOALS & TIMELINES                                               |
|------------------------|-------------------------------------------------------------------------------|
| AZ                     | 2000 levels by 2020; 50 percent below 2000 levels by 2040                     |
| CA                     | 2000 levels by 2010; 10 percent below by 2020; 80 percent below by 2050       |
| CT                     | 1990 levels by 2010; 10 percent below by 2020; 75 percent below by 2050       |
| MA                     | 1990 levels by 2010; 10 percent below by 2020; 75 percent below by 2050       |
| ME                     | 1990 levels by 2010; 10 percent below by 2020; 75 percent below by 2050       |
| NJ                     | 5 percent below 1990 by 2005                                                  |
| NM                     | 2000 by 2012; 10 percent below by 2020; 75 percent below 2050                 |
| NY                     | 5 percent below 1990 by 2010                                                  |
| OR                     | 1990 by 2010; 10 percent below by 2020; 75 percent by 2100                    |
| RI                     | 1990 by 2010; 10 percent below by 2020; 75 percent by 2050                    |
| VT                     | 25 percent below 1990 levels by 2012; 50 percent below 2028; 75 below by 2050 |
| WA<br>(Puget<br>Sound) | 1990 by 2010; 10 percent below by 2020; 75 percent by 2100                    |

Source: December 2006 New Mexico Climate Change Advisory Group Report