

Creating a Future

Paul Peterson 15 May 2008

REV Distributed Energy Conference, Stratton, VT

REV Conference

Topics for Today

- What we know today
- What we think we know about the future
- Uncertainties and unknowns
- A strategy for going forward

ISO Scenario Analysis Report

- Predominance of gas generation under all scenarios makes natural gas the marginal unit in most hours
 - Natural Gas generation sets hourly marginal price
 - Natural Gas market volatility will transfer to energy market
 - Global natural gas market limits ability to change energy price
- Carbon emissions have little variability under all scenarios
 - Modest RGGI targets are not achieved
 - More significant reductions appear unattainable
 - Nuclear scenario is an exception
- All new generation options show investment uncertainty
 - Energy and capacity revenues do not support most scenarios
 - Significant infrastructure costs for all

Natural Gas Sets the Energy Price

Figure 5-2: Percent of time fuel is on the margin.

Modest RGGI Goals Not Met

Figure 5-10: Total annual CO₂ emissions, grouped by sensitivity case and showing the New England allocation of the 2018 RGGI cap allowances.

Note: Table includes emissions for units that are not obligated to comply with RGGI requirements.

Synapse Companion Report

- The ISO is required to be resource neutral, but we are allowed to choose our future
- Increase efficiency resources to develop Modified scenario
 - Start with ISO's mix of energy efficiency and demand response
 - Blend with the ISO's Double EE scenario
 - Use results of Double EE scenario to estimate energy price
- Implications of Modified scenario
 - Significant reduction in purchased energy (quantity)
 - Small reduction in average annual energy price
 - Carbon emissions almost reach RGGI targets
 - Financial viability appears robust
 - No incremental infrastructure costs (possible savings)

Companion Report to ISO-NE SA

Companion Report to ISO-NE SA

Companion Report to ISO-NE SA

What we think we know about the future

Additional ISO Analysis

Goals

- Lower energy consumption
- Level or reduced peak demand
- Carbon reductions that exceed modest RGGI goals
- Reduced need for T&D upgrades
- Modified Scenario results verified by ISO-NE
- Preferred Scenario results more dramatic than expected
 - Carbon reductions significantly exceed RGGI
 - Energy consumption and peak load greatly reduced
 - Energy clearing prices decreased significantly

ISO Scenario Analysis

What we know today

MA DOER Report

What we know today: Energy Efficiency Costs

What we know today

State Polices on EE

- Some states have adopted specific targets
 - NY15% by 2015
 - NJ 20% by 2020
 - IL 2% annual savings by 2015 (includes EE)
 - MN 1% annual savings from EE
 - PA 18.5% RPS (includes EE) by 2020
 - NC 12.5% RPS (includes EE) by 2021
 - VA reduce electric consumption 10% by 2022
- Some states have adopted general targets
 - MA- all new load met with DR and EE
 - CT, RI, VT, CA and WA: all cost-effective EE

Possible future: TX

Texas to 2023

Figure 6: A particularly helpful example of how EE, DR and renewables can help to meet capacity needs is a recent analysis of Texas' growing demand.

Possible future: NY

NY to 2015

Figure 8: A graph showing the energy impacts of New York's "15 By 15" approach (15% energy reduction by 2015).

REV Conference

Summary

- Not possible to "build out" to solve problems
- DR and EE:
 - Lowest cost resources
 - Abundant resources
 - Lower carbon emissions
 - Avoid infrastructure costs

Policy issues

- Commitment to reduce carbon?
- Commitment to do cost effective EE and DR?
- State driven or federally driven?
- Carbon goals vastly exceed RGGI goals

Possible Future: CT

The Big Future Issue: Climate

New England Greenhouse Gas Emissions by Sector (Million Metric Tons CO2 eqv.) - EA Inventory for 2003, CLF 2005 & 2010 projections based on "business as usual" and post 2010 decreases to reach 80% reductions by 2050

Strategy for going forward

Technology transformation issues

- Smart appliances and smart grid
- Specific technologies
 - Residential photovoltaic applications
 - Residential wind applications
 - Residential combined heat and power (CHP)
- Legislation, codes, regulation, and market rules to support a distributed grid

Strategy for going forward

It is okay to dream

- Envision a distributed grid and consider how actions can support it
- Envision small scale energy production from as many resources as possible
- Consider planning issues associated with zero load growth (or less) for 10-20 years
- Support changes to electric industry necessary to achieve transformation

Alternative Strategy (not recommended)

REV Conference, Stratton, 2008

QUESTIONS?

Paul Peterson ppeterson@synapse-energy.com

www.synapse-energy.com