

Cap and Trade CO₂ Regulation: Efficient Mitigation or a Give-away?

ELCON Spring Workshop – Nashville, TN Presented by Ezra Hausman and Chris James June 3, 2008

Cap and Trade: Design Is Important

Chris:

- Cap and Trade design considerations
- Auction vs. allocation
- Industrial user role

Ezra:

- Cap and Trade carbon regulation in REGULATED and DEREGULATED electricity markets
- Example: Hypothetical Cap & Trade program impacts in PJM
- Take-home messages
- Questions & Discussion

Design Elements

- What is the baseline and how is it set?
- Apportionment: how are emissions calculated?
- Allowances: Who gets them and how are they allocated?
- Auctions: What are they? Why do they matter?
- How do these elements relate to the industrial sector

Cap and Trade Fundamentals

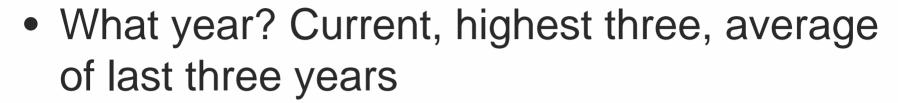
- History: 1991 amendments to the Clean Air Act: acid rain
- 1998: Ozone Transport Region (NE and mid-Atlantic States: Nox budget program
- 2005 European Union: CO₂ emissions trading system
- 2009: US NE states: Regional Greenhouse Gas Initiative (RGGI)

Differences Between Regulating Emissions of Acid Rain and Greenhouse Gases

Acid Rain:

- Regulated utility environment
- Direct controls, applied upstream
- Measure reductions at stack with CEM
- Co-benefits: "what's a co-benefit?"

Greenhouse Gases:


- Patchwork: regulated and restructured
- Regs applied upstream, "controls"?
- CEM measure CO₂, but no control devices
- Co-benefits: matter, as do unintended consequences

Regulated v. Patchwork

- Regulated utilities recover costs through their PSC
- Restructured utilities include costs in hourly electricity bids
- Consumers pay in both cases

Direct v. Indirect Controls

- Acid rain: install scrubbers and SCR, measure reductions = simple
- GHG: limited direct options: fuel switching, nuclear, but both are expensive, have financial risks and take years to construct
- Indirect: energy efficiency, distributed generations (CHP).

Applicability: size threshold and basis.
 Count behind the meter generation?

Apportionment

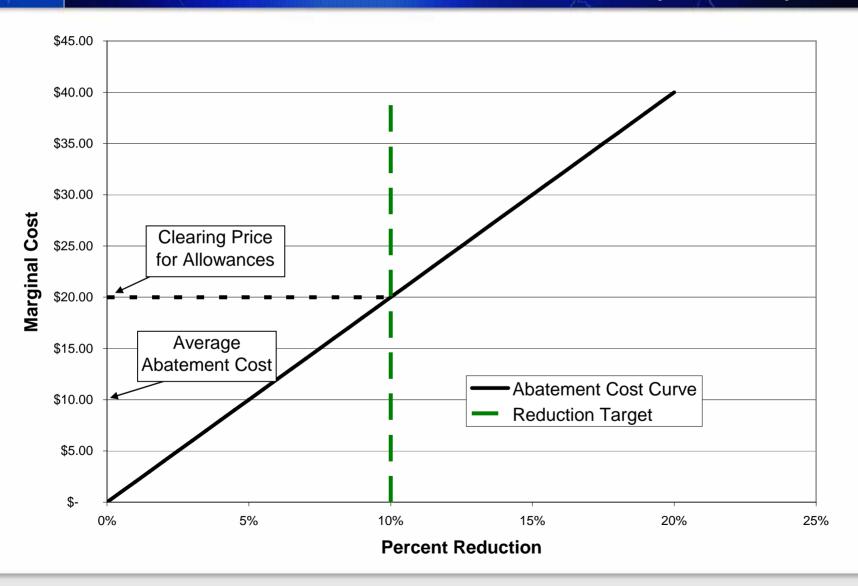
- What basis?
- Heat input: pounds CO₂ per MMBTu?
- Generation output: pounds CO₂ per MWh
- Population
- Consumption
- Hybrid of the above?
- How matters, and states may make the ultimate decision

- Who receives allowances?
- Generators?
- Load serving entities?
- First seller?
- Are allowances provided administratively (free), auctioned, or a mix?

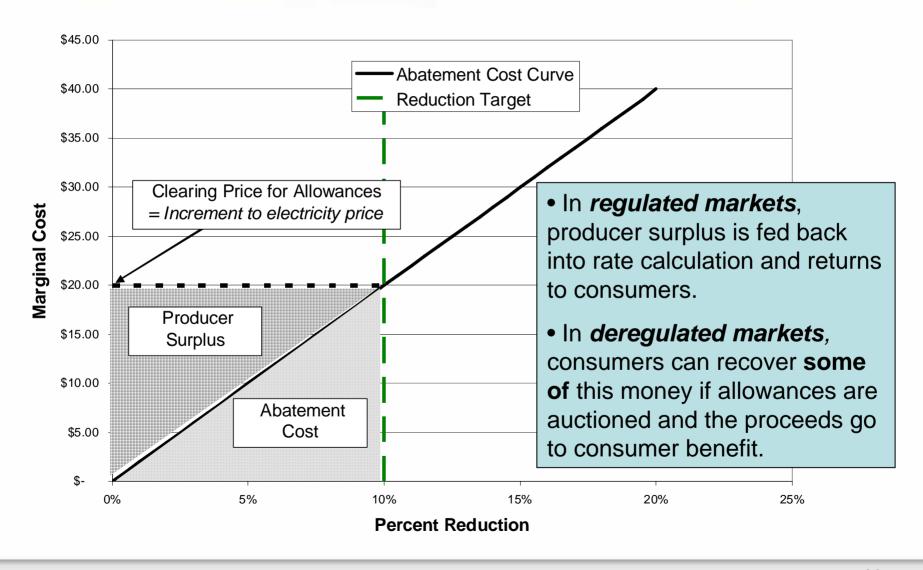
Industrial Sector Role in GHG

- Energy efficiency investments cost-effective (EE potential studies:1-2 c/kWh in many states)
- States also have climate plans, where EE is one of chief means to achieve reductions
- Co-benefits: new ozone standard out; ISO-NE and PJM capacity markets, generate credits for energy efficiency performance standards

- Acid rain: generators sold allowances and invested \$ in controls.
- GHG: generators sell allowances and ???
- Auction: capture portion of this revenue and direct it to programs that reduce GHG and provide ratepayer benefits

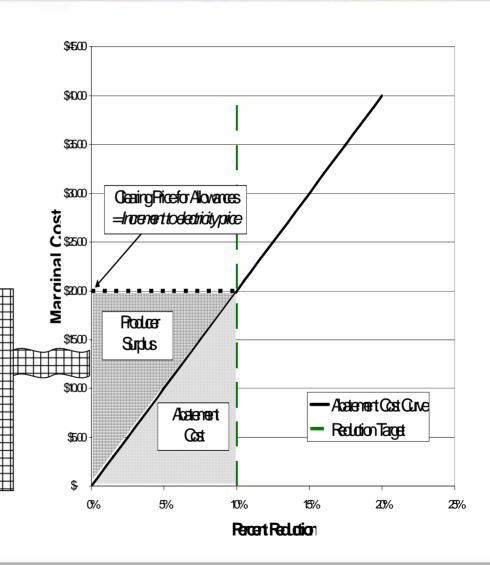

Cap & Trade Regulation

...Cap and Trade allocates scarce resource (emission rights) to most efficient application...blah, blah, blah...



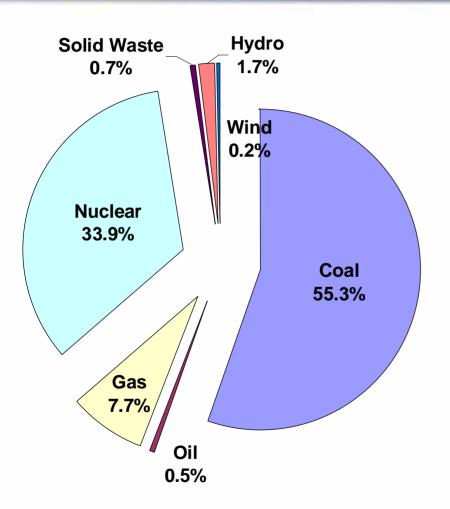
What they show you...

What they may neglect to mention...


Oh, and this...

Payoff for existing low-carbon resources (primarily nuclear) in **deregulated** electricity markets:

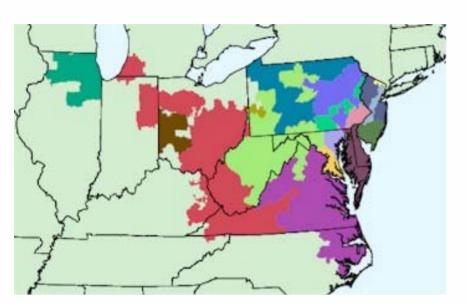
• Additional revenue: \$Billions


Additional cost: \$0

Some definitions...

- Regulated implies responsible, hands-on utility regulators who carefully balance rates with costbased revenue requirements
- Allowance Allocation means 100% of emissions allowances are given to emitters, free of charge, in some proportion to their historic carbon emissions
- Allowance Auction means 100% of emission allowances are auctioned off, with the proceeds used for the benefit of consumers in some wise and reasonable way.

PJM GWh Production in 2007



Two Questions:

- 1. Who gets the benefit of higher electricity prices?
- 2. Who pays the price?

Source: PJM 2007 State of the Market Report

Example 1: PJM under Federal Cap & Trade

- Reduction target: to 90% of BAU
- Allowance trading price: \$20
- Average cost of abatement: \$10

Four scenarios:

- Regulated with allocation
- Regulated with auction
- Deregulated with allocation
- Deregulated with auction

Calculating the price impact

Under LMP, only the marginal unit(s) affect the price; thus the price impact of CO₂ allowance costs will be based on the marginal emission rate for each hour and region.

Technology	2007 Time on Margin	CO2 Emission Rate (tons/MW h)
Coal	70%	1.05
Misc	2%	
Natural Gas	24%	0.66
Nuclear	0%	
Petroleum	5%	0.98

Sources:

PJM 2007 State of the Market report (marginal units) http://www.eia.doe.gov/cneaf/electricity/page/co2_report/co2emiss.pdf

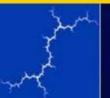
Calculating the price impact

Weighted average emission rate in PJM:

0.95 tons CO₂ per MWh produced

Average price impact of a \$20 allowance:

$$0.95 \times \$20 = \$19/MWh$$

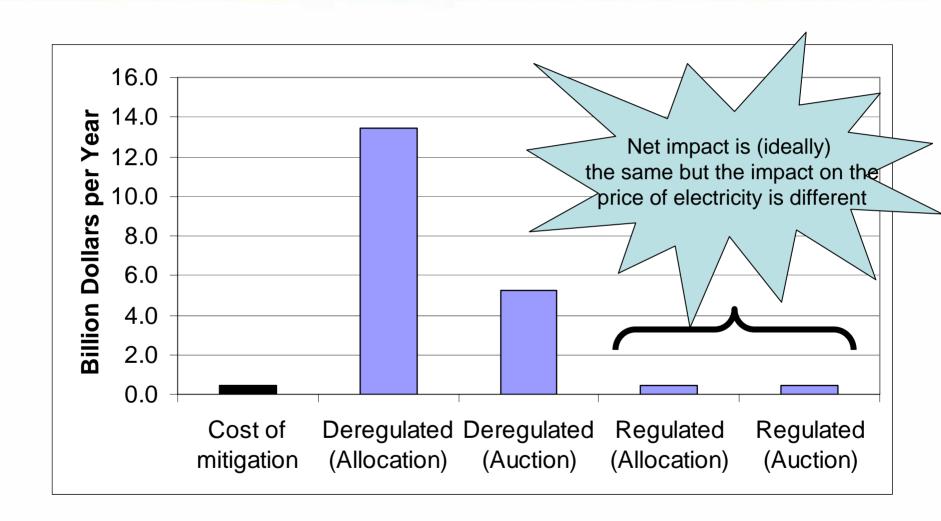

Balance Sheet #1: Cap-and-trade in a regulated market with free allocation of allowances

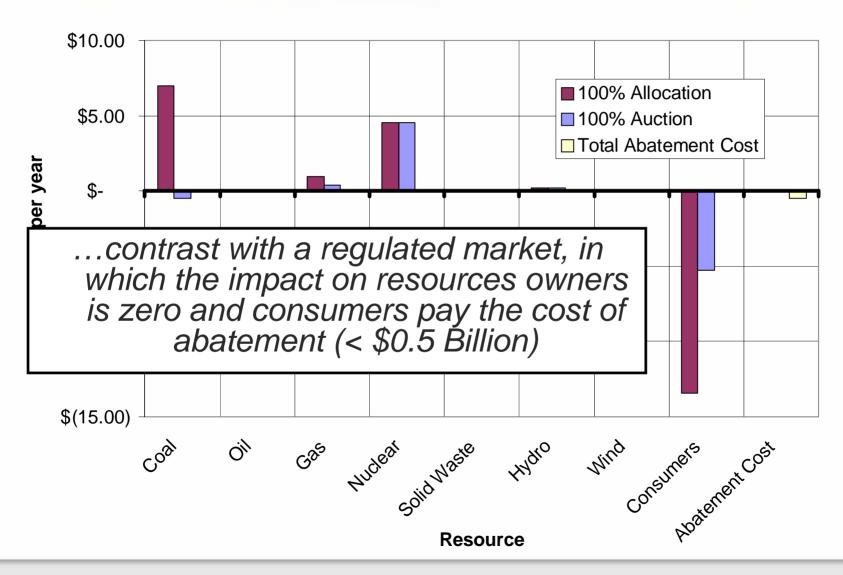
	/	Coal	_	oil	/	Gas	/	Muclea	\$/	Solid	Maste	Hydro	<u> </u>	Wind	Consume
Million Ton Allowances Allocated		375		3		31		0		0		0		0	
Value of allowances @\$20/ton	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ 8,169
Cost of 10% abatement @ \$10/ton average cost	\$	(416)	\$	(3)	\$	(35)	\$	-	\$	-	\$	-	\$	-	
Cost of allowances for remaining 90%	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ (8,169)
Sum of allowance and abatement costs	\$	(416)	\$	(3)	\$	(35)	\$		\$	-	\$	-	\$	-	
Price impact	\$	416	\$	3	\$	35	\$	-	\$	-	\$	-	\$	-	\$ (454)
Net Gain (Loss)	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-	\$ (454)

Balance Sheet #2: Cap-and-trade in a regulated market with auction of allowances to benefit consumers

	/	Coal	_	oi!	/	GAS	Muclea	\$/	Solidi	Maste	Hydro	Wind	Consume	,5
Million Ton Allowances Allocated		0		0		0	0		0		0	0	408	
Value of allowances @\$20/ton	\$	-	\$	-	\$		\$ -	\$	-	\$	-	\$ -	\$ 8,169	
Cost of 10% abatement @ \$10/ton average cost	\$	(416)	\$	(3)	\$	(35)	\$ -	\$	-	\$	-	\$ -		
Cost of allowances for remaining 90%	\$	(7,491)	\$	(54)	\$	(625)	\$ -	\$	-	\$	-	\$ -		
Sum of allowance and abatement costs	\$	(7,907)	\$	(57)	\$	(659)	\$ -	\$	-	\$	-	\$ -	\$ 8,169	
Price impact	\$	7,907	\$	57	\$	659	\$ -	\$	-	\$	-	\$ -	\$ (8,623)	
Net Gain (Loss)	\$	-	\$	-	\$	-	\$ -	\$	-	\$	-	\$ -	\$ (454)	

Balance Sheet #3: Cap-and-trade in a deregulated market with free allocation of allowances


	Coal	oi!	/	GOS .	Mucleo	. /	Solidi	Naste	Hydro	Wind	Consume
Million Ton Allowances Allocated	375	3		31	0		0		0	0	0
Value of allowances @\$20/ton	\$ 7,491	\$ 54	\$	625	\$ -	\$	-	\$	-	\$ -	\$,
Cost of 10% abatement @ \$10/ton average cost	\$ (416)	\$ (3)	\$	(35)	\$ -	\$	-	\$	-	\$ -	
Cost of allowances for remaining 90%	\$ (7,491)	\$ (54)	\$	(625)	\$ -	\$	-	\$	-	\$ -	
Sum of allowance and abatement costs	\$ (416)	\$ (3)	\$	(35)	\$ -	\$	-	\$	-	\$ -	\$ -
Price impact	\$ 7,422	\$ 66	\$	1,031	\$ 4,549	\$	87	\$	233	\$ 24	\$ (13,413)
Net Gain (Loss)	\$ 7,006	\$ 64	\$	997	\$ 4,549	\$	87	\$	233	\$ 24	\$ (13,413)


Balance Sheet #4: Cap-and-trade in a deregulated market with auction of allowances to benefit consumers

	/	Coal	_	oi!	/	Ga ⁵	Mucleo	. /	Solidi	Naste	Hydro	Wind	Consume
Million Ton Allowances Allocated		0		0		0	0		0		0	0	408
Value of allowances @\$20/ton	\$	-	\$	-	\$	-	\$ -	\$	-	\$	-	\$ ı	\$ 8,169
Cost of 10% abatement @ \$10/ton average cost	\$	(416)	\$	(3)	\$	(35)	\$ -	\$	-	\$	-	\$ ı	
Cost of allowances for remaining 90%	\$	(7,491)	\$	(54)	\$	(625)	\$ -	\$	-	\$	-	\$ ı	
Sum of allowance and abatement costs	\$	(7,907)	\$	(57)	\$	(659)	\$ -	\$	-	\$	-	\$ ı	\$ 8,169
Price impact	\$	7,422	\$	66	\$	1,031	\$ 4,549	\$	87	\$	233	\$ 24	\$ (13,413)
Net Gain (Loss)	\$	(882)	\$	6	\$	317	\$ 4,305	\$	83	\$	221	\$ 23	\$ (5,244)

Cost to consumers depends on market structure and allocation scheme

Winners and Losers in deregulated market

Take-home messages for DEREGULATED markets

- Cap and Trade + deregulated electricity markets =
 - HIGH COST
 - MINIMAL BENEFITS
 - WINDFALL PROFITS FOR EXISTING RESOURCES
- Worse with allowance allocation, but still pretty bad with auction
- Existing, amortized nuclear resources make out best, multiplying consumer cost without producing any benefits

Take-home messages for REGULATED markets

- Net cost impact of cap & trade equals mitigation cost, ASSUMING:
 - ...if allowances are *allocated*, prudent, costbased regulation so that the value of allowances is counted towards the utilities' revenue
 - ...if allowances are *auctioned*, proceeds are used wisely for consumer benefit and are not raided for other purposes
- AUCTIONING of allowances raises the price per kW-hour, which increases the incentive for energy efficiency

Winning strategies...

- Energy efficiency
- Re-regulate electricity markets before implementing cap & trade
- Windfall profits tax on existing resources (esp. nuclear)
 - Energy efficiency
- Spend a large chunk of allowance auction proceeds on energy efficiency
- Large users: reduce demand or build your own zero-carbon resources, whichever is cheaper
 - Energy efficiency

Winning strategies

 Direct development of renewable energy and DSM is a MUCH MORE EFFICIENT approach to reducing carbon emissions

Shockingly, large transfer payments to generation owners *do* matter to electricity consumers, and they harm the economy. This is why the FPA mandates *just and reasonable rates.*

...Cap and Trade allocates scarce resource (emission rights) to most efficient application...blah, blah, blah...

Conclusions

- Cap and trade in deregulated markets can raise the price of electricity, with an economic impact that is orders of magnitude larger than the actual cost of mitigation
- Big transfer payments to existing, amortized resources who will benefit from higher prices but see no cost impact
- If allowances are allocated in deregulated markets, even coal (most GHG-intensive fuel) makes a windfall
- In regulated markets, consumers pay only the cost of mitigation whether allowances are allocated or auctioned— ASSUMING wise and prudent cost-based regulation
- Program design MUST allow for compliance through efficiency and renewables, and states MUST seize these opportunities!

Discussion Questions

- What are you doing to prepare for GHG regulations? How are you analyzing economics? What assumptions are you using?
- Do you participate in PSC filings? How?
 How about legislation/ rulemaking?