

Utility Regulation and Coal

Public Interest Environmental Law Conference

March 3, 2012 - Eugene, Oregon Bruce Biewald, Synapse Energy Economics

Utility regulation and coal: today's discussion

- 1) U.S. coal-fired power is important
- 2) Opportunity to retire and replace uneconomic coal plants
- 3) The owners have problematic incentives
- 4) The solution includes intervening effectively at state public utility commissions

U.S. coal plants

Existing coal generating capacity

Source: Synapse, 2012.

US electric power CO₂ emissions

- U.S. CO₂ Emissions ≈ 22% of World Total
- U.S. Electric Sector ≈ 40% of U.S. Total
- U.S. Electric Sector ≈ 9% of World Total

U.S. generating fuel mix in two scenarios

Source: Synapse. Toward a Sustainable Future for the U.S. Power Sector: Beyond Business as Usual 2011. 2011.

Upcoming EPA rules

2011		2012	2013	2014	20	015	2016	2017	2018	Beyond
	Cross State Air Pollution Rule (SO2/NOx)									
Coal Combustion Residuals (Ash)										
Hazardous Air Pollutants (including mercury)										
Cooling Water Intake										
Efflu							Effluent Lir	ffluent Limitation Guidelines		
CO2 Prevention of Significant Deterioration										
CO2 New Source Performance Standa								ce Standarc	ls	
NAAQS Review for PM 2.5										
NAAQS Review for NOx and SO2 Secondary Star										ndards
							NAAC	S Review fo	or Ozone	

Proposed rules Final rules Compliance period/NAAQs designations effective

Source: Synapse. Economics of Existing Coal Generation and Opportunities for Clean Energy. 2011.

Projected coal capacity "at risk" under various regulatory policies

Source: Synapse. Economics of Existing Coal Generation and Opportunities for Clean Energy. 2011.

Utility reference case carbon dioxide prices (2011 \$/ton)

Source: Synapse, 2012.

Utility ratemaking

- Regulated Monopoly Economics
- Electric utility prices are not set by "the market." They are set by state public utility commissions in "rate cases."
- Fuel, O&M, purchased power and administrative costs are passed through as expenses.
- Power plant investments are put into "ratebase" and recovered over time with an allowed administratively determined return on equity.
- Plant investment that is not prudently incurred should be removed from rates.
- Plant investment that is not "used and useful" should be removed from rates.

Running costs of existing U.S. coal units by capacity factor (\$/MWh), relative to estimated cost of *existing* natural gas combined cycle unit

Current Forward Going Cost + FGD + SCR + Baghouse + ACl + Cooling + CCR + Effluent + CO2 @ \$20/ton (\$/MWh)

Source: Synapse, 2012.

Running costs of existing U.S. coal units by capacity factor (\$/MWh), relative to estimated cost of *new* natural gas combined cycle unit

Current Forward Going Cost + FGD + SCR + Baghouse + ACI + Cooling + CCR + Effluent + CO2 @ \$20/ton (\$/MWh)

Source: Synapse, 2012.

Utility Integrated Resource Planning (IRP)

- What is an IRP, and what is it for?
- State IRP rules
- Energy prices and environmental compliance planning
- Restructured markets
- Ratemaking and cost recovery

Presence or absence of state IRP rules and procurement plan filing requirements

Source: Synapse. A Brief Survey of State Integrated Resource Planning Rules and Requirements. 2011.

Schiller 4 and 6 net revenue

Source: Synapse. Economic Analysis of Schiller Station Coal Units. 2011.

Utility energy efficiency program annual spending and savings

The sample represents 199 program-years of data, for 28 different companies delivering programs in the 2000 to 2010 timeframe.

Poor electric system planning practice

- Passive attitude toward information
- Rely on out-of-date construction cost estimates
- Consider only "existing" environmental regulations
- Ignore CO₂ price, or treat it "at the end" as a sensitivity case
- Assume existing plants continue to operate
- Overly constrain alternatives such as renewables and energy efficiency

Good electric system planning practice

- Actively seek out relevant information
- Rely on up-to-date and realistic construction cost estimates
- Anticipate reasonably likely future environmental regulations
- Include reasonable CO₂ price forecast in the reference case, and analyze high and low sensitivities
- Evaluate continued operation vs. retirement options for existing plants
- Include full consideration of alternatives

PRUDENT

U.S. generating capacity additions by vintage and fuel type

Source: Synapse, 2012.

Reference List

- Biewald, B. Economics of Existing Coal Generation and Opportunities for Clean Energy. Presented on behalf of the Energy Foundation. 2011. Synapse Energy Economics.
- Biewald, B. *Review of Resource Planning around North America: Supply and Demand-Side Resource Planning in ISO/RTP Market Regimes*. 2011. Synapse Energy Economics.
- Keith, G., B. Biewald, E. Hausman, K. Takahashi, T. Vitolo, T. Comings, and P. Knight. *Toward a Sustainable Future for the U.S. Power Sector: Beyond Business as Usual 2011.* 2011. Synapse Energy Economics.
- Peterson, P. and R. Wilson. *A Brief Survey of State Integrated Resource Planning Rules and Requirements.* 2011. Synapse Energy Economics.
- White, D., D. Hurley, and J. Fisher. *Economic Analysis of Schiller Station Coal Units*. 2011. Synapse Energy Economics.