

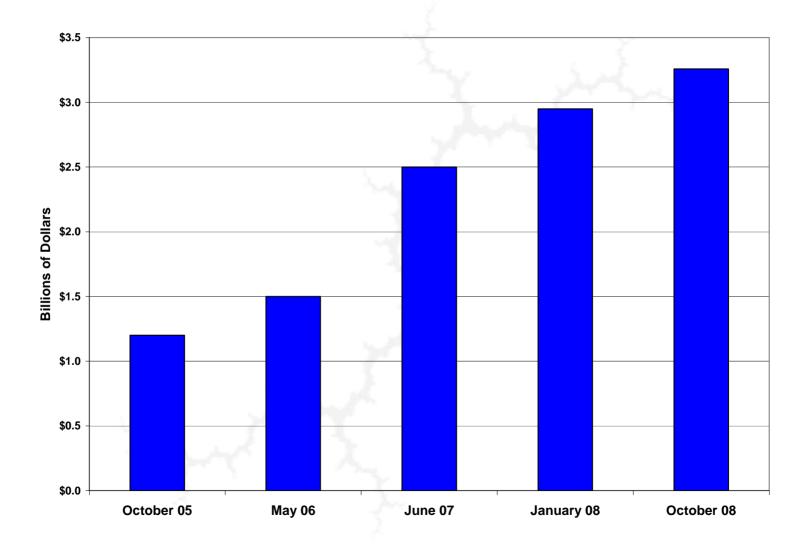
The Risks of Building and Operating Plant Washington

> Sustainable Atlanta Roundtable December 5, 2008 David Schlissel

- 1. Skyrocketing plant construction costs and extended schedules
- 2. The inevitability of a comprehensive federal system of mandated reductions in greenhouse gas emissions.
- 3. The possibility for state or regional mandated reductions in greenhouse gas emissions and/or the adoption of policies promoting increased use of energy efficiency and renewable resources.
- 4. Uncertainties surrounding the technical and economic viability of post-combustion carbon capture and sequestration for pulverized coal-fired power plants.
- 5. Coal price increases and supply disruptions.
- 6. More stringent regulation of the current criteria pollutants.
- 7. Water use and availability.

Ignoring Risks or Pretending There Will Be Easy Solutions Will Lead to

A Train Wreck for Consumers, Plant Owners, Investors, the Economy and the Environment

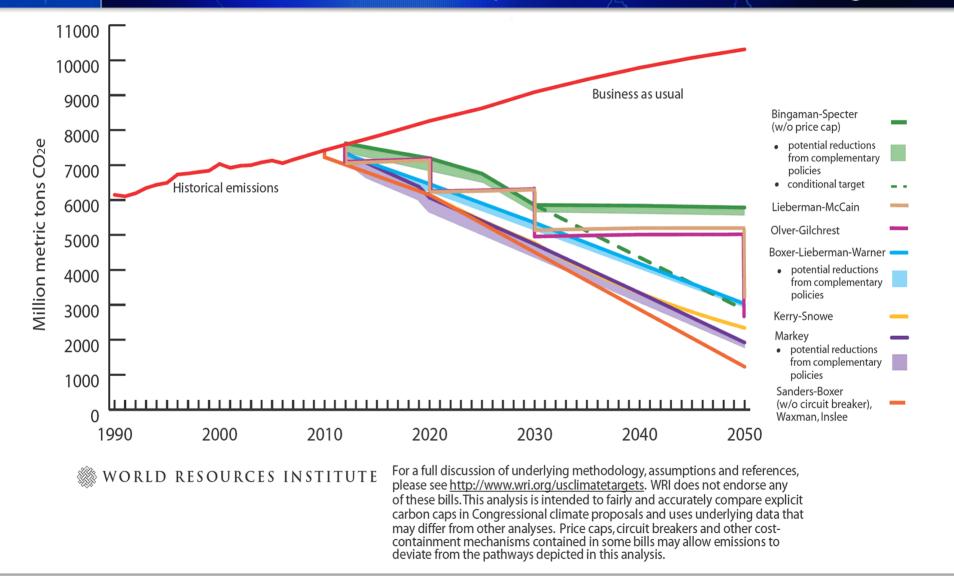


The Paradigm Must Change – New Solutions Are Needed

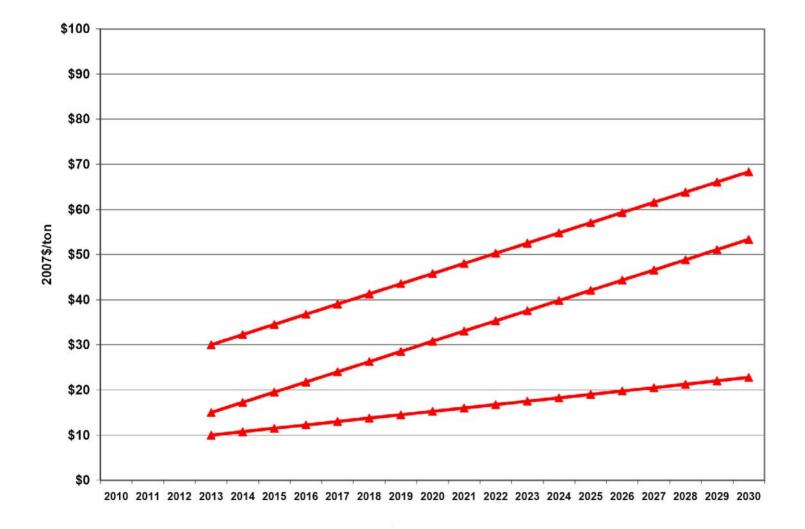
Costs of New Power Plants Have Skyrocketed

- Power plant construction costs have increased dramatically since early 2000's.
 - in 2002 estimated costs for new coal plants were in the range of \$1500/kW
 - by 2006 estimated costs grew to \$2000-2500/kW
 - by 2008 estimated costs increased above \$3500/kW
- Descriptive terms used to describe construction costs are "skyrocketing," "staggering" and "sticker shock."
- But many cost estimates remain unrealistically low.

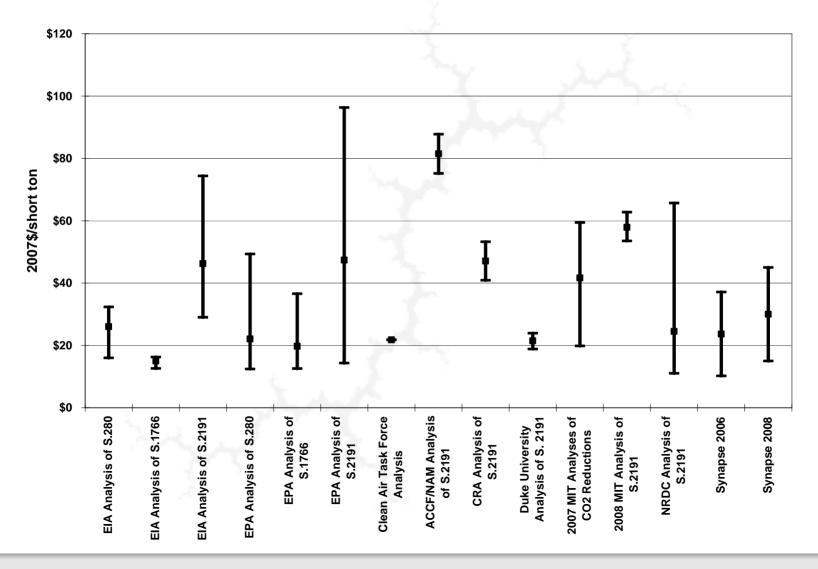
Proposed 960 MW AMP-Ohio Coal Plant -Increases in Estimated Construction Costs

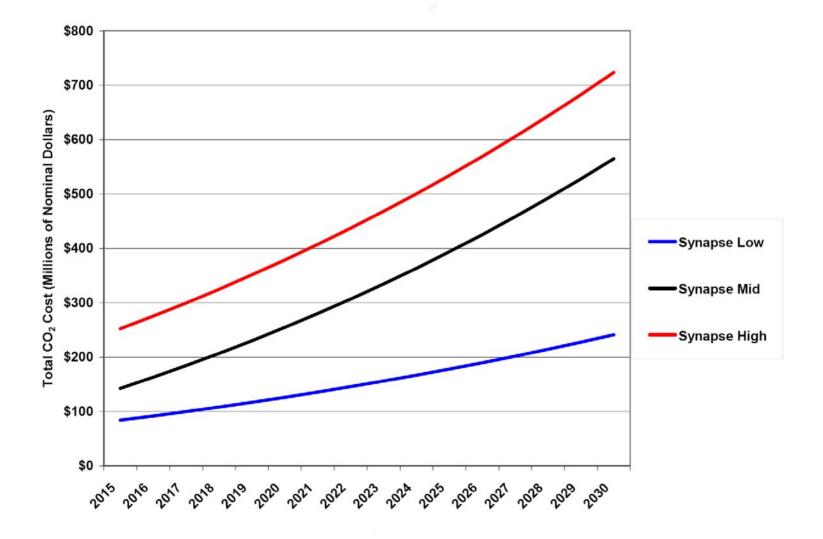

Recent Coal-Fired Power Plant Cost Estimates

Plant	Type of Coal Plant	Owner	Date of Estimate	Total Cost (Billions)	Size (MW)	Cost/ kW
Plant Washington	n SCPC	Power4Georgians	January-08	\$2.00	850	\$2,353
Turk	SCPC	SWEPCO	Spring 2008	\$1.52	600	\$2,533
Karn-Weadock	SCPC	Consumers Energy	September-07	\$2.21	800	\$2,765
Meigs County	SCPC	AMP-Ohio	October-08	\$3.26	960	\$3,394
Nelson Dewey 3	CFB PC	Wisconsin Power & Light	September-08	\$1.26	326	\$3,865
Columbia 3	SubCritical PC	Wisconsin Power & Light	September-08	\$1.28	326	\$3,936
Marshalltown	SCPC	Interstate Power & Light	September-08	\$2.23	630	\$3,538



- Cost increases are due, in large part, to significant increase in worldwide demand for power plants. Demand for plants is straining supply of design and construction resources.
- Increased demand from China and India.
- Despite recent cancellations, there is strong U.S. demand for new power plants and pollution control projects for older plants.
- Limited capacity of EPC (Engineering, Procurement and Construction) firms and manufacturers.
- Fewer bidders for work, higher prices, earlier payment schedules and longer delivery times.


CO₂ Emissions Reductions Under Proposals Introduced in Congress


Synapse 2008 CO₂ Price Forecasts

Synapse CO₂ Prices vs. Results of Modeling of Climate Change Bills in Current Congress

Annual Costs of Purchasing Allowances for CO₂ Emissions from Plant Washington

Cost of Power - Plant Washington vs. Energy Efficiency, Renewables and Gas-Fired Capacity

			· · · · · · · · · · · · · · · · · · ·
	Cost with	Cost with	Cost with
	Synapse Low	Synapse Mid	Synapse High
	CO ₂ Price	CO ₂ Price	CO ₂ Price
Resource Option	Forecast	Forecast	Forecast
	(Cents per	(Cents per	(Cents per
	kWH)	kWH)	kWH)
Plant Washington	9.3	11.3	12.7
Energy Efficiency	2 to 7	2 to 7	2 to 7
Biomass	5 to 9.4	5 to 9.4	5 to 9.4
On-shore Wind	4.5 to 11	4.5 to 11	4.5 to 11
Off-shore Wind	8 to 16	8 to 16	8 to 16
Gas-Fired Combined Cycle	9.5	10.4	11.0
Illustrative portfolio of	9.2	9.8	10.2
efficiency, biomass, wind, and			
combined cycle			

Poor Electric Resource Planning Practice

- Passive attitude toward information.
- Rely on out-of-date construction cost estimates.
- Ignore CO₂ price, look at a single, low set of CO₂ prices, or treat CO₂ "at the end" as a sensitivity case.
- Overly constrain alternatives such as renewables and energy efficiency.
- Claim that the proposed coal plant is part of a strategy or plan for reducing CO₂ emissions.

IMPRUDENT!

Good Electric Resource Planning Practice

- Actively seek out relevant information.
- Rely on up-to-date and realistic construction cost estimates.
- Include reasonable CO₂ price forecasts in the reference case, and analyze high and low sensitivities.
- Include full consideration of alternatives.

PRUDENT!

Questions, Comments, Follow-up

dschlissel@synapse-energy.com