

Guiding Utility Performance: A Handbook for Regulators

A Webinar for Members of the Western Interstate Energy Board

December 4, 2014

Tim Woolf, Melissa Whited, and Alice Napoleon

Background

- This slide deck is a preview of a report being prepared for the Western Interstate Electricity Board.
 - Report will be released in February
 - Currently seeking your input
- Handbook for regulators on guiding and motivating utilities to improve performance using:

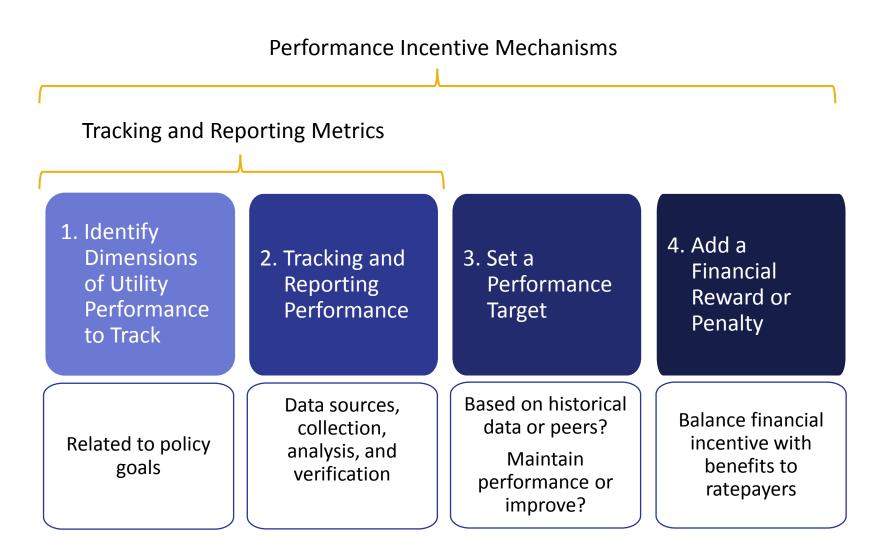
1) Tracking and reporting metrics

2) Performance Incentive Mechanisms (PIMs)

- The handbook is designed to be useful both
 - Under the variety of regulatory systems currently in place
 - Under new regulatory and utility business models in the future
- Handbook builds off of Phase I work:
 - Phase I: Introductory paper focused on new regulatory models.
 - <u>http://westernenergyboard.org/wp-content/uploads/2014/03/SPSC-CREPC_NewRegulatoryModels.pdf</u>

Why Focus on Utility Performance?

Lack of Correct Incentives	 Current ratemaking practices might not provide the right incentives Too much emphasis on increasing rate base? Too much emphasis on increasing sales?
Need for Improvement	 Utility performance in some areas may be subpar
Prevent Degradation of Service	 Economic and regulatory cost-cutting pressures might result in degradation of service
Need for Greater Regulatory Guidance	 On specific goals (e.g., clean energy, customer satisfaction) On new and emerging utility issues: Distributed generation opportunities Grid modernization opportunities Third-party access to customers Carbon constraints


Why Utility Performance Incentives?

- They can capture utility management attention
- They allow regulators to provide specific guidance on important goals
- They allow regulators to be more proactive on certain areas
- They can be applied incrementally:

- They allow for flexibility over time.
- They represent a low-risk regulatory option.

Tracking and Reporting vs. PIMs

Existing Industry Standards

The electricity industry already adheres to a variety of industry standards.

For example:

- Institute of Electrical and Electronics Engineers (IEEE)
- National Electric Safety Code (NESC)
- Occupational Safety and Health Administration (OSHA)
- American National Standards Institute, Incorporated (ANSI)
- Underwriters Laboratories, Inc. (UL)
- National Electrical Code (NEC)
- North American Electric Reliability Corporation (NERC)
- Federal Energy Regulatory Commission (FERC)
- Environmental Protection Agency (EPA)

Examples of Existing or Proposed PIMs

Operation and Costs	 Power plant performance (Florida, Hawaii) System average energy costs (Washington) Cost of renewable generation (California) O&M costs (Alabama, Louisiana, Maine, Hawaii) Cost reductions in transmission constraints and inefficiencies (Connecticut) Cost reductions through off-system sales (numerous jurisdictions)
Specific Resource Goals	 Compliance with renewable portfolio standards (numerous jurisdictions) Energy efficiency and demand savings attainment (numerous jurisdictions) Resource diversity (Nevada)
Adapting to Change	 Customer retail choice (Michigan, New York) Grid modernization (Illinois) Distributed generation installations (Connecticut, Hawaii) Renewable energy curtailments (Hawaii) Innovation (United Kingdom) Long-term planning (Hawaii)

The Regulatory Context(s)

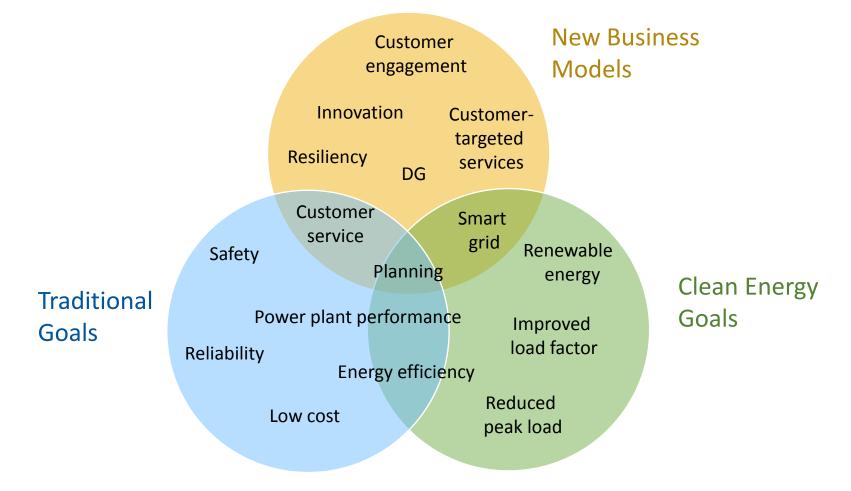
Many Aspects of Regulation Affect Performance

Regulatory Mechanisms	Options and Examples
Prudency Reviews	Disallowances for imprudent investments
ROE Adjustments	Adjustments to ROE related to utility performance
Frequency of Rate Cases	Number of years between rate cases; voluntary or mandatory stay-out period
Adjustments between Rate Cases	Inflation index or other attrition relief mechanism, for example K-factors or Z-factors
Reporting and Tracking Metrics	Reliability standards, RPS targets, etc. with reporting requirements but no financial incentive
Trackers and Riders	Fuel trackers, DSM trackers, etc.
Decoupling	Lost revenue recovery; full decoupling using a revenue-per- customer approach or other escalator
Price or Revenue Caps	Price cap or revenue cap to encourage cost minimization
Performance Incentive Mechanisms	Performance targets with penalties and rewards. Numerous design options (formula shape, deadbands, magnitude of financial incentive).

The Regulatory Context

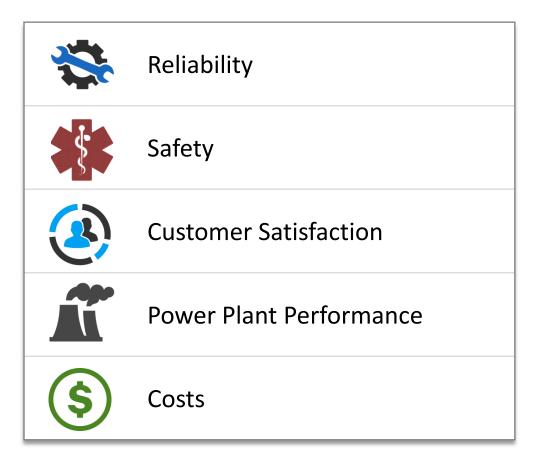
- When considering whether and how to apply performance incentives, it is essential to first assess the incentives that currently exist
 - o Are there areas of performance that are not covered?
 - \circ Are there unintended incentives embedded in the current system?
 - o Are there regulatory goals that are not addressed in the current system?
 - Have utilities' performance been subpar in some areas?
- When designing and implementing performance incentives, it is essential to ensure that it is consistent with the rest of the regulatory system
 - Adjusting for limitations in the current system
 - Addressing areas that are not already addressed
 - Avoiding the creation of too great or too small an incentive
 - Accounting for how the regulatory system might evolve

Current and Emerging Regulatory Contexts


Traditional Cost- of-Service Ratemaking	 Performance incentive mechanisms have been used to address areas that are not well covered by traditional practices, or that provide specific benefits to ratepayers, for example: Shared savings of off-system sales Power plant performance standards 	
Performance Based Ratemaking (PBR)	 Implemented in several states, typically at the time of restructuring Increased the need for performance standards – in order to prevent degradation of service under price or revenue caps 	
New Regulatory and Utility Business Models	 Several states are seeking new models to guide utility performance in light of evolving markets, technologies and customer needs Several proposals: Place an emphasis on performance, results, and outcomes as opposed to specific investments or decisions. 	

 Propose to use performance incentive mechanisms to provide a supplemental stream of utility revenues

Identify Areas of Performance that Warrant Attention


Dimensions of Utility Performance

Dimensions of utility performance that are closely related to state energy policy goals may warrant tracking or incentives.

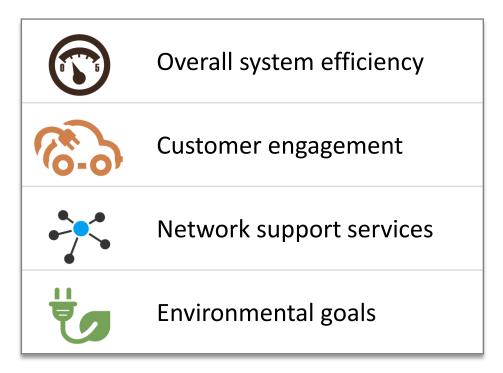
Traditional Performance Areas

Traditional aspects of utility performance include:

Reliability & Safety

Performance Dimension	Indicator	Metric
1. Reliability	System Average Interruption Duration Index	Total customer minutes of sustained interruptions / total number of customers
	System Average Interruption Frequency Index	Total number of customer interruptions / total number of customers
2. Safety	Employee work-related deaths, injuries, and illnesses	(Number of work-related deaths, days away from work, job transfers or restrictions, and other recordable injuries and illnesses X 200,000) / Employee hours worked
	Time away from work, job transfers, or restrictions due to work-related incidents	(Number of work-related days away from work and job transfers or restrictions X 200,000) / Employee hours worked
	Time away from work due to work- related incidents	(Number of work-related days away from work X 200,000) / Employee hours worked

Customer Satisfaction, Plant Performance


Performance Dimension	Indicator	Metric
	Residential customer satisfaction	Electric Utility Residential Customer Satisfaction Index
	Business customer satisfaction	Electric Utility Business Customer Satisfaction Index
3. Customer Satisfaction	Transaction surveys	% customers satisfied with their recent transaction with the utility
3	Customer complaints	Rate of formal complaints to the Commission
	Order fulfillment	Speed with which orders are fulfilled
	Missed appointments	% of appointments met (for appointments where customer is required to be on the premises)
	Call center answer speed	% of calls answered within 30 seconds
4. Plant Performance	Fuel usage	Quantity of fuel burned
	Heat rate	Average BTU per kWh net generation (heat rate)

Costs

Performance Dimension	Indicator	Metric
	Capacity costs	Cost per kW of installed capacity
	O&M costs	O&M expenses per net kWh
5. Costs	Fuel costs	Average cost of fuel per kWh net gen and per Million BTU; total fuel costs
\$	Effective resource planning	Numerous metrics regarding incorporation of stakeholder input, consideration of all relevant resources, use of appropriate assumptions and modeling tools, etc.

Emerging Performance Areas

Innovative metrics that can help to meet new and evolving challenges:

Emerging Areas: System Efficiency

Performance Dimension	Indicator	Metric
	Load Factor	Sector average load / sector peak load
		Monthly system average load / monthly system peak load
	Usage per Customer	Sector sales / sector number of customers
		System average heat rate (system average BTU per kWh net generation)
1. System Efficiency	Dower Dient Efficiency	EFOR = Equivalent Forced Outage Hours / (Period Hours – Equivalent Scheduled Outage Hours)
	Power Plant Efficiency	EFORd: Equivalent Forced Outage Rate Demand. Measures the probability that a unit will not meet its demand periods for generating requirements because of forced outages or derates
		Weighted Equivalent Availability Factor (WEAF)
	Flexible Resources	MW of fast ramping capacity (load following resources capable of 15-minute ramping and regulation resources capable of 1-minute ramping)
	System Losses	Total energy losses / MWh generation, excluding station use

Emerging Areas: Customer Engagement

Performance Dimension	Indicator	Metric
	Energy efficiency	Number and % of customers enrolled per year, by sector
		Annual and lifecycle energy savings (MWh) and peak demand savings (MW)
	Domond records	Number and % of customers enrolled per year, by sector
	Demand response	Potential and actual peak demand savings (MW)
		Number of installations per year, number of customers by sector
2. Customer	Distributed generation	Geographic distribution of installations, ability to defer T&D investments
Engagement		Net metering installed capacity (MW) and energy (MWh) sold back to utility
	Storage	Number of installations per year, number of customers by sector
		MW installed by type (thermal, chemical, etc.)
		Percent enrolled in demand response programs
	Electric vehicles	Number of installations per year
		Percent enrolled in demand response programs
	Information availability	Number of customers able to access daily usage data via web
		Percent of customers with access to hourly or sub-hourly usage data via web
	Time-varying rates	Number of customers on time-varying rates

Emerging Areas: Network Support Services

Performance Dimension	Indicator	Metric
	Advanced metering	Number and % of customers with AMI and AMR
		Energy served through AMI
3. Network Support Services	Distributed Resource Interconnection	Average days for customer interconnection of distributed resources
	Interconnection of Bulk Renewables	Speed of turn-around of OATT studies
	Third party access	Open and interoperable smart grid infrastructure that facilitates third-party devices
	Provision of customer data	Customers able to authorize third-party access electronically
		Percent of customers who have authorized third-party access
		Third party data access at same granularity and speed as customers

Emerging Areas: Environmental Goals

Performance Dimension	Indicator	Metric
	Critoria pollutante	Tons SO ₂ emissions
	Criteria pollutants	lbs NO _x / MMBtu
	Carbon emissions	Tons CO ₂
4. Environmental Goals	Carbon intensity	Tons / customer
	System carbon emission rate	Tons / MWh sold
	CPP carbon emission rate	lbs CO ₂ from fossil generators / (Fossil Fuel Generation (MWh) + 5.8% Nuclear Generation (MWh) + Renewable Generation (MWh) + Cumulative Energy Efficiency (MWh))
	Fossil carbon emission rate	Tons / MWh fossil generation
	Fossil generation	Fossil percent of total generation
	Renewable generation	Renewable percent of total generation

Measuring Performance, Establishing Targets, and Setting Financial Incentives

Measuring Performance

Key Principles for Metric Choice	 Choose metrics that: Provide insight regarding how a utility is performing in a critical performance area Are not significantly influenced by external factors, or such influence can be controlled for using statistical or other techniques Can be readily measured using available data Are easily interpreted
Metric Definitions	 Consistent with national or regional definitions to facilitate comparison across utilities Specific regarding what is included and excluded Reliability example: Exclude major storms, with specific definition for "major" Definition of a "sustained interruption," consistent with IEEE standards
Data Collection, Analysis, and Verification	 Utility data collection versus use of an independent party Avoid complex data analysis that reduces transparency Data should be verified (by Commission or third party)

Data Already Available: Traditional areas

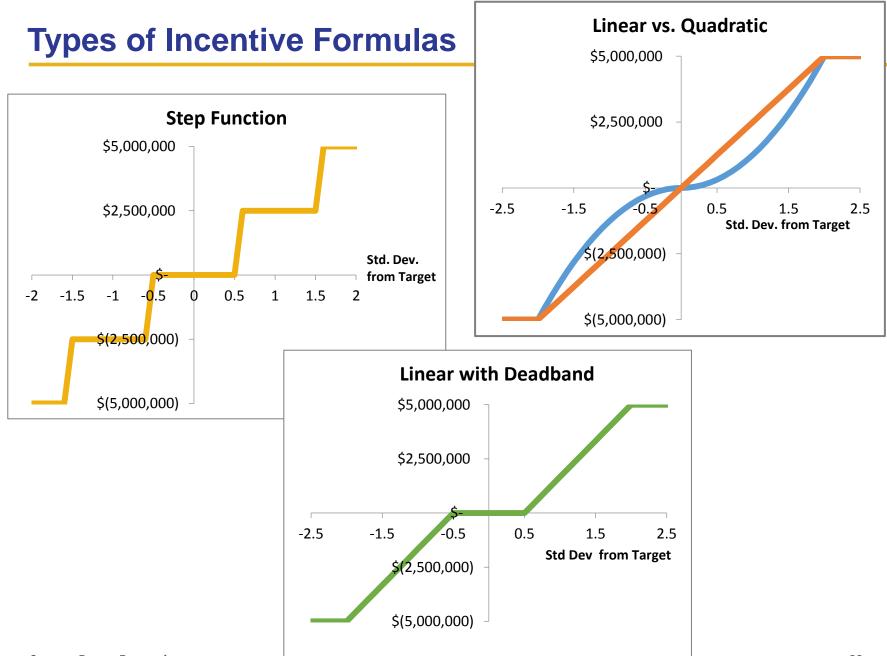
Performance Dimension	Indicator	Data Source
Reliability	System Average Interruption Duration Index	EIA Form 861
Reliability	System Average Interruption Frequency Index	EIA Form 861
	Employee work-related deaths, injuries, and illnesses	OSHA Form 300
Safety	Time away from work, job transfers, or restrictions due to work-related incidents	OSHA Form 300
	Time away from work due to work-related incidents	OSHA Form 300
Customer Satisfaction	Residential customer satisfaction	J.D. Power Electric Utility Residential Customer Satisfaction Study
Customer Satisfaction	Business customer satisfaction	J.D. Power Electric Utility Business Customer Satisfaction Study
Plant Performance	Fuel usage	FERC Form 1
Plant Performance	Heat rate	FERC Form 1
	Capacity costs	FERC Form 1
Costs	Total energy costs	FERC Form 1
	Fuel cost	FERC Form 1

Data Already Available: Emerging areas

Performance Dimension	Indicator	Data Source	
	Load factor	- FERC Form 1	
System Efficiency	Usage per customer		
System Enciency	Power Plant Efficiency	FERC Form 1*, NERC GADS*	
	System losses	FERC Form 1	
	Energy efficiency		
	Demand response		
Customer Engagement	Distributed generation	EIA Form 861	
	Information availability		
	Time-varying rates		
Network Support Services	Advanced metering capabilities	EIA Form 861	
	Criteria pollutants	EDA Air Markots Brogram Data	
	Carbon emissions	 EPA Air Markets Program Data 	
	Carbon intensity		
Environmental Goals	System carbon emission rate	EPA Air Markets Program Data and EIA 861	
	Fossil carbon emission rate		
	Fossil generation	 EIA Form 923 and EIA Form 860* 	
	Renewable generation		

* Metric can be derived using data reported in this database

Establishing a Performance Target


Tie target to ultimate goal	•	Targets should be set in a way that ensure progress toward achieving the policy goal.
Balance costs and benefits	•	Marginal cost of improving performance should not exceed marginal benefits to ratepayers.
	•	Surveys can be used to assess customer willingness to pay for benefits.
Set a realistic target	•	 Historical data Normalize to account for unusual events Ensure historical business conditions are still relevant Peer groups (normalized) Ensure peer group is adequately similar Econometrics can help control for differences among utilities Frontier analysis (e.g., Data Envelopment Analysis) Identifies most efficient firms and assigns other firms a score based on their relative efficiency
	•	Utility-specific studies (IRP, engineering studies, potential studies)

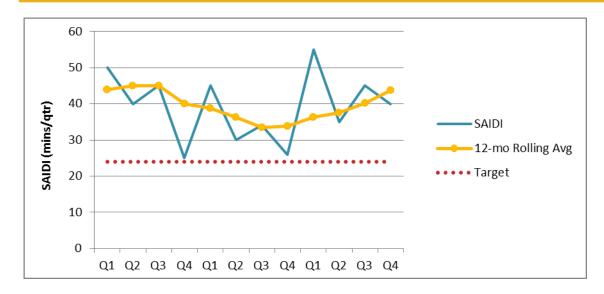
Establishing a Performance Target (cont.)

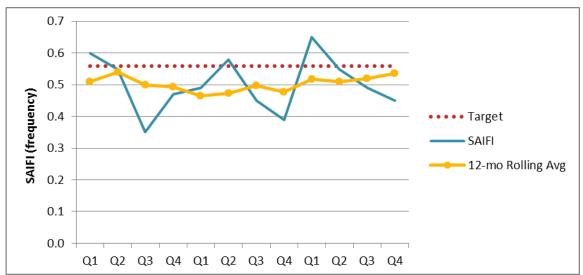
Use deadbands	•	Mitigate uncertainty regarding the optimal performance level
	•	Allow for some variance in utility performance due to factors outside management control
Allow targets to evolve	•	Targets should be adjusted only slowly and cautiously in order to provide utilities with regulatory certainty.
	•	Targets may need to evolve for two reasons:
		 It may not be possible to immediately achieve the desired level of performance; thus target should become more stringent over time
		 New technologies may lead to new capabilities and new policy goals (e.g., smart grid investments)
Incorporate	•	Can be extremely helpful to involve stakeholders in setting targets
stakeholder input	•	Gives validity, buy-in, and credibility so that everyone feels that this is a good target for the utility to be rewarded or penalized for

Setting a Financial Incentive

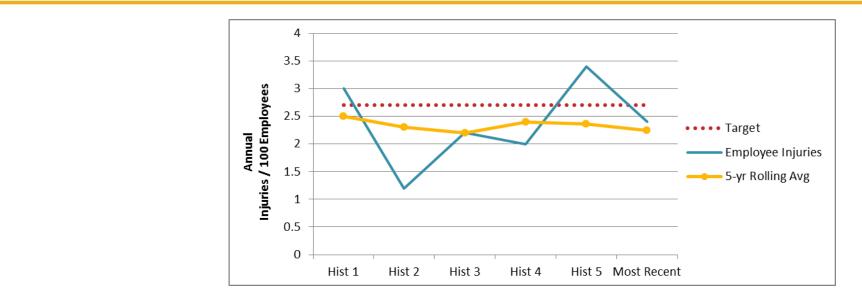
Symmetry	 Symmetry is generally preferred Asymmetry may be appropriate when performance above target does not provide significant marginal benefits E.g., the benefits of increased reliability may not warrant the cost
Magnitude	 Maximum rewards paid to utility should not exceed total benefits to ratepayers
Units for presentation and comparison	 Presentation of magnitude of rewards/penalties: Cents/share Basis points Dollars % of revenues Presenting rewards/penalties in all four units facilitates comparisons and improves understandability
Units for administration	 Dollars are generally easiest to administer, and avoids utility incentive in increase rate base to benefit from rewards administered as basis points

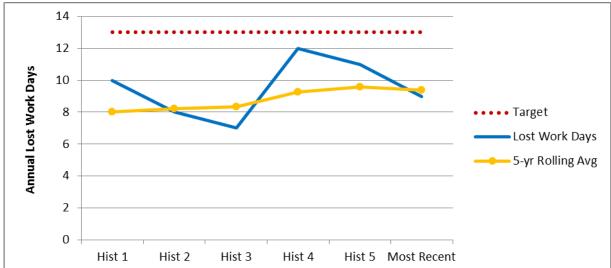
Dashboards: Easy access to up-to-date, concise performance information

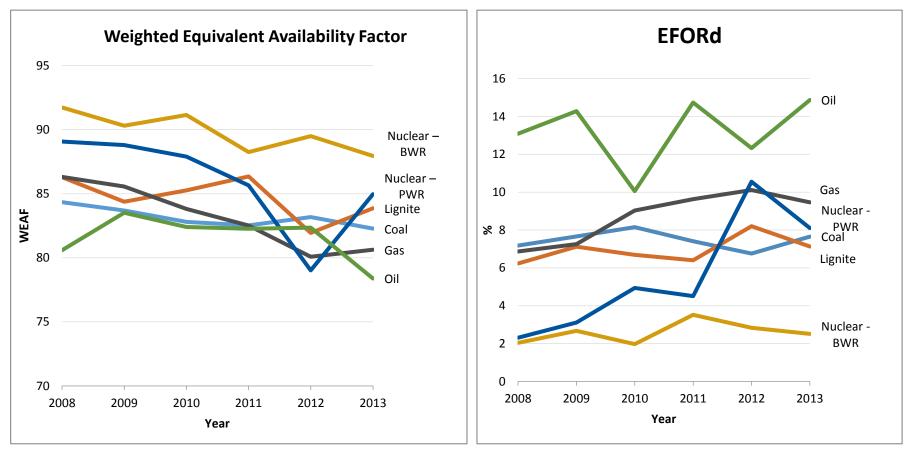

Dashboards


Dashboards provide a way for regulators and stakeholders to easily access utility performance data.

Data should be:

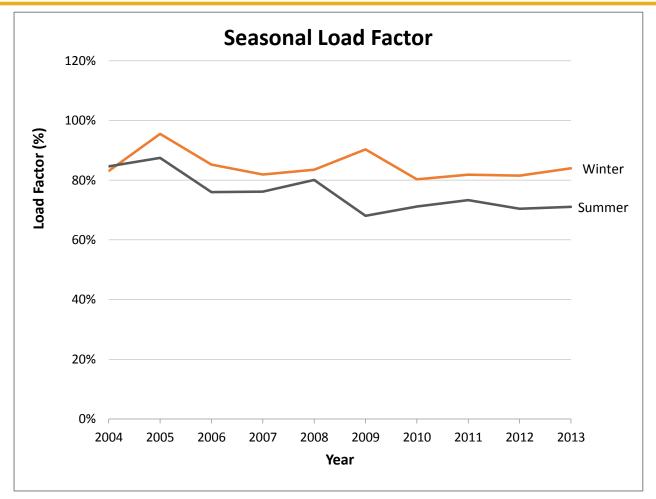

Accessible	•	Performance data should be presented on a publicly-accessible website The actual data should be downloadable in spreadsheet form
Clear and concise	•	Performance should be presented in clear graphs If the utility has a performance target, this should be included in the graph
	•	An explanation of how the metric is calculated should be provided
Comprehensive	•	The website should provide data for all metrics that the Commission wishes to track


Dashboard: Reliability



Dashboard: Safety

Dashboard: Power Plant Availability

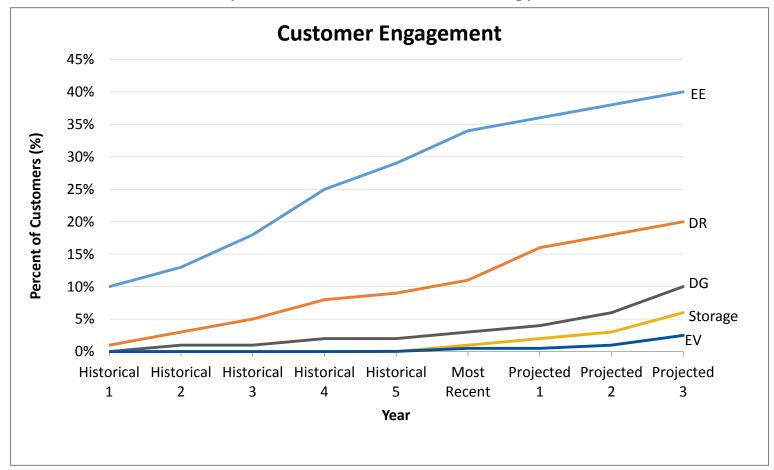

EFORd: Equivalent Forced Outage Rate Demand. Measures the probability that a unit will not meet its demand periods for generating requirements because of forced outages or derates.

Weighted Equivalent Availability Factor (WEAF): The capacity weighted equivalent availability factor for a fleet of units.

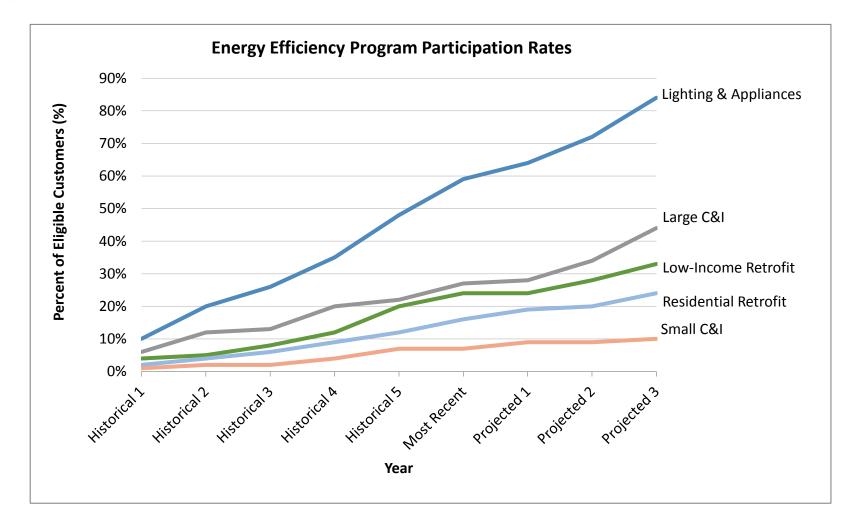
Data source: NERC 2014. Generating Availability Data System (GADS) 2008-2013 Generating Unit Statistical Brochure—All Units Reporting. http://www.nerc.com/pa/RAPA/gads/Pages/Reports.aspx.

Synapse Energy Economics

Dashboard: System Efficiency

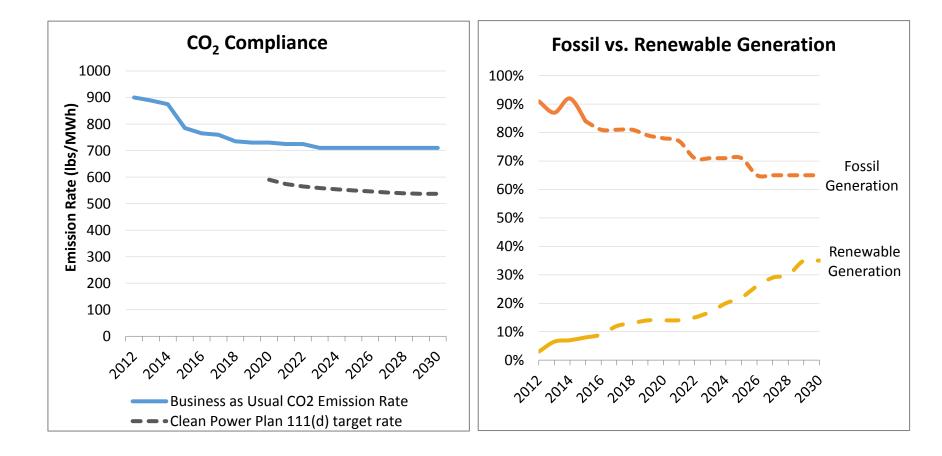


Load factor: system average load for the peak summer (or winter) month / system peak load for the peak summer (or winter) month.


Data source: 2004 – 2013 FERC Form 1, page 401b, for a western utility.

Dashboard: Customer Engagement

One metric is the adoption rate of distributed energy resources



Dashboard: EE Participation Rates, by Sector

Illustrative example of cumulative participation rates, by sector.

Dashboard: Environmental Goals

Summary of Regulatory Guidance

Questions to Help Inform Regulatory Action

- 1. How well does the existing regulatory framework support utility performance?
 - Are utilities meeting current regulatory goals?
 - Are there areas of performance that require improvement?
- 2. Is the industry / market / regulatory context expected to change?
 - Do the utilities have the proper regulatory guidance to respond to changes?
 - Do the utilities have the proper incentives to respond to changes?
 - Are there emerging goals that the commission whishes to emphasize?

3. Does the commission prefer to oversee investments, or to guide outcomes?

- Traditional regulation typically oversees the investments that are intended to achieve outcomes.
- Performance regulation defines the outcomes, but not the means to achieve them.

4. Does the commission wish to specify the outcomes in advance?

- Traditional regulation typically oversees investments after the fact (e.g., in rate cases).
- Performance regulation defines desired outcomes in advance.

Implementation Steps – Incremental Approach

- 1. Articulate regulatory goals.
 - Historic and current regulatory goals
 - New and emerging regulatory goals
- 2. Identify performance areas that warrant tracking and reporting.
 - Traditional performance areas
 - New and emerging performance areas
- 3. Establish tracking and reporting protocols and requirements.
 - Monitor results over time
 - Identify areas of performance that warrant targets
- 4. Establish performance targets.
 - Monitor results over time
 - Identify areas of performance that warrant penalties / rewards
- 5. Establish penalties and rewards.
 - Monitor, revise, improve

Pitfalls to Avoid

Over-	• Excessive rewards undermine the whole concept of incentive mechanisms.
compensation	Potential solutions:
	 Use an incremental approach: start low and monitor over time.
	 Careful PIM design (e.g., shared savings).
Unintended consequences	 An incentive for one performance area may cause the utility to under- perform in areas that do not have incentives.
	Potential solutions:
	 Focus on performance areas that are isolated from others.
	 Be cautious of implications for other performance areas.
	 Consider implementing a diverse, balanced set of incentives.
Regulatory	• PIMs can be too costly, time-consuming, or too much of a distraction.
burden	 Can be a problem for utilities, regulators, and stakeholders.
	Potential solutions:
	 Streamline using existing data, protocols, and simple designs.
	 Reduce the amount of money at stake.

Pitfalls to Avoid

Uncertainty	 Metrics, targets, and financial consequences that are not clearly defined reduce certainty, introduce contention, and are less likely to achieve policy goals. <i>Potential solutions:</i> Carefully specify metric and target definitions, soliciting utility and stakeholder input where possible. Adjust targets and financial consequences only cautiously and gradually so as to reduce uncertainty and encourage utilities to make investments with long-term benefits.
Gaming and Manipulation	 Utilities may have an incentive to manipulate results. Potential solutions: Identify verification measures. Consider using independent third parties (that are not selected or paid by the utility) to collect or verify data. Avoid complex data analysis techniques that are difficult to audit and reduce transparency.

PIM Design Principles

Performance	Recognize incentives already in place
Areas	 Address areas of utility performance that have not been satisfactory or are not adequately addressed by other incentives
	Anticipate emerging challenges
Measuring Performance	Choose metrics that are largely free from arbitrary influence and that are easily measured and interpreted
	Define metrics precisely, using regional or national definitions where possible
	 Use independent parties to collect or verify data, and avoid complex data analyses that reduce transparency
Setting	Tie target to state energy policy goals
Targets	Balance costs and benefits
	 Set a realistic target, using deadbands to mitigate uncertainty
	 Adjust targets only slowly and cautiously
	Adjust targets only slowly and cautiouslyIncorporate stakeholder input in setting targets
Financial Incentives	
	 Incorporate stakeholder input in setting targets Ensure rewards are not excessive, but sufficient to get attention of utility

Contact

Tim Woolf, Melissa Whited, Alice Napoleon Synapse Energy Economics

617-661-3248

mwhited@synapse-energy.com

- Synapse Energy Economics is a research and consulting firm specializing in energy, economic, and environmental topics.
- Since its founding in 1996, Synapse has been a leader in providing rigorous analysis of energy, environmental and regulatory issues, for public interest and government clients.