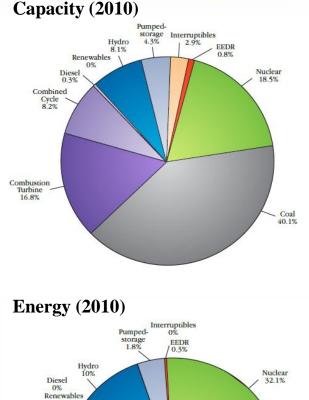
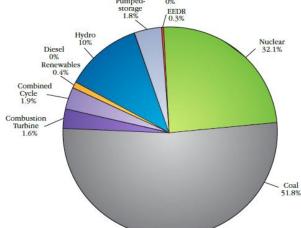


Greening TVA: Leveraging Energy Efficiency to Replace TVA's Highly Uneconomic Coal Units


Kenji Takahashi and Jeremy Fisher, Ph.D. 2013 ACEEE National Conference on Energy Efficiency as a Resource Nashville, Tennessee September 23, 2013


www.synapse-energy.com | ©2013 Synapse Energy Economics, Inc. All rights reserved.

Tennessee Valley Authority

- Federally Owned Corporation
 - Chartered 1933 for job creation
 - No traditional regulatory oversight
 - G&T distributes to 155 LDC
- TVA owns 63 coal units (about 14.5 GW)
 - 24 slated for retirement via 2011 consent decree
 - 39 currently operating and "expected" to continue operating
 - Consent decree requires
 - 15 FGD
 - 11 SCR
 - 18 baghouses or retirement / repower to biomass

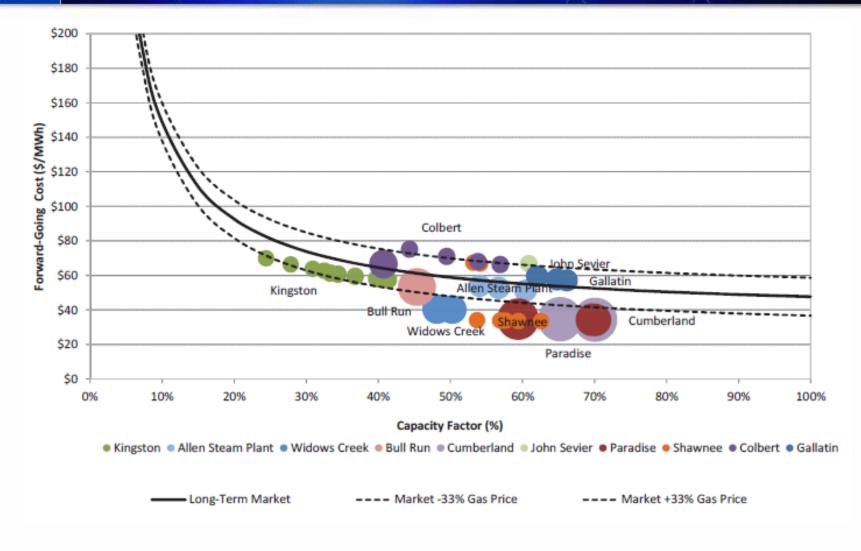
US EPA Regulation

	2012	2013	2014	2015	2016	2017	2018	2019	2020	
Air Toxics	MATS Rule		Pre-compliance Compliance Extensions				Compliance with MATS			
Criteria Air	CSAPR Vacatur			acement /Supr	eme Court reins	Replacement compliance				
Pollutants	Interim CAIR implementation									
	Develop Revised NAAQS (PM2.5, Ozone, SO2, NOx) Implement SIPs for Revised NAAQS									
Regional Haze	First planning period, adoption of SIPs and BACT for eligible sources Next planning period									
Green House Gases	Compliance with Federal GHG Reporting									
	PSD/BACT, Title V apply to GHG emissions (new & modified sources)									
	Develop GHG	S NSPS		Pre-co	ompliance perio	d? Co	ompliance with G	HG NSPS		
Coal Ash	Develop Coal Combustion Residuals Rule Pre-compliance period?								í	
Cooling Water	Develop Coo	oling Water Ru	ile	Pre-complian	ce period?		Cooling W	/ater phase-in		
Effluents	Develop Efflu	uent Limitation	n Guidelines	1	Effluent limit	ts compliance	e phase-in			

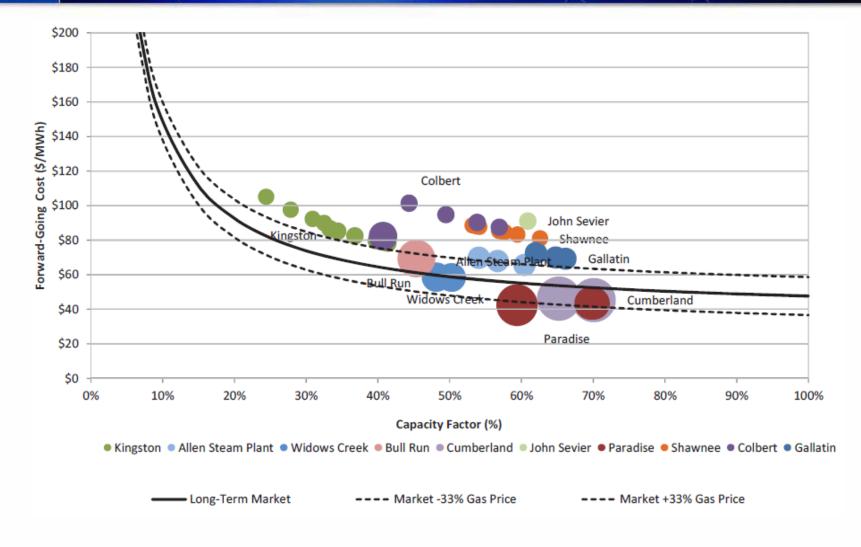
Source: Adapted by Synapse from ISO-NE presentation to Environmental Advisory Group, July 19, 2013.

Keeping coal alive costs billions

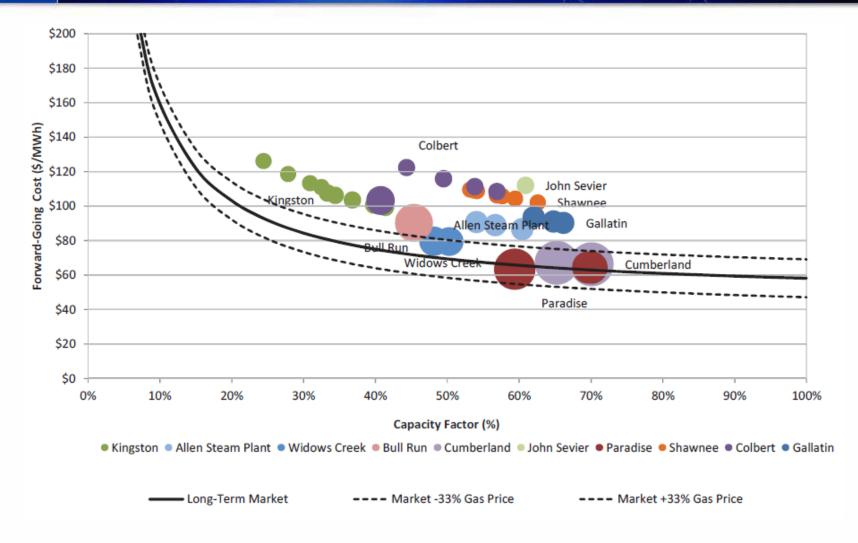
		1112.0				No. of Concession, Name	Coal Combustion	Effluent	1 mars
Maria (11-11		FGD	SCR	Baghouse	ACI	Tower	Residuals	Treatment	Total Car
Plant / Unit Gallatin 1	State TN	(Million \$)	(Million \$)	(Million \$)	(Million				
Gallatin 2			\$12	billion		\$30	\$58	\$55	\$434
Gallatin 2	TN	\$1/7			90 	\$30	\$58	\$55	\$434
	TN	(TV	A annou	unces \$1	.1 b)	\$35	\$59	\$60	\$46
Gallatin 4	TN	\$189	912	247	59	\$34	\$59	\$60	\$46
Allen Steam 1 Allen Steam 2	TN TN		\$725	million		\$32	\$63	\$76	\$41
		(T)//	\	20 000 C		\$30	\$63	\$76	\$41
Allen Steam 3 Colbert 1	TN	\$132		nces \$6		\$28	\$63	\$76	\$41
	AL		\$47	\$35	\$3	\$18	\$53	\$36	\$32
Colbert 2	AL	\$132	\$47	\$35	\$3	\$16	\$53	\$36	\$32:
Colbert 3	AL	\$132	\$47	\$35	\$3	\$14	\$53	\$36	\$320
Colbert 4	AL	\$132	\$47	\$35	\$3	\$17	\$53	\$36	\$32
Colbert 5	AL	\$273		\$79	\$4	\$36	\$68	\$100	\$56
Shawnee 1	KY	\$122	\$44		\$4	\$15	\$50	\$28	\$26
Shawnee 2	KY	\$122	\$44		\$4	\$16	\$50	\$28	\$26
Shawnee 3	KY	\$122	\$44		\$4	\$17	\$50	\$28	\$26
Shawnee 4	KY	\$122	\$44		\$4	\$15	\$50	\$28	\$26
Shawnee 5	KY	\$122	\$44		\$4	\$17	\$50	\$28	\$26
Shawnee 6	KY	\$122	\$44		\$4	\$16	\$50	\$28	\$26
Shawnee 7	KY	\$122	\$44		\$4	\$16	\$50	\$28	\$26
Shawnee 8	KY	\$122	\$44		\$4	\$15	\$50	\$28	\$26
Shawnee 9	KY	\$122	\$44		\$4	\$16	\$50	\$28	\$26
Widows Creek 7	AL			\$86	\$4	\$44	\$62	\$92	\$28
Widows Creek 8	AL			\$94	\$4	\$44	\$61	\$87	\$29
Paradise 1	KY			\$97	\$4		\$62	\$88	\$25
Paradise 2	KY			\$97	\$4		\$62	\$88	\$25
Paradise 3	KY			\$135	\$4		\$72	\$103	\$31
Bull Run 1	TN			\$112	\$4	\$69	\$101	\$246	\$53
Cumberland 1	TN			\$161	\$4	\$145	\$75	\$176	\$56
Cumberland 2	TN			\$162	\$4	\$135	\$75	\$176	\$55
John Sevier 3	TN	\$131	\$47	\$35	\$3	\$19	\$58	\$62	\$35
Kingston 1	TN			\$31	\$3	\$9	\$50	\$29	\$12
Kingston 2	TN			\$31	\$3	\$7	\$50	\$29	\$12
Kingston 3	TN			\$31	\$3	\$9	\$50	\$29	\$12
Kingston 4	TN			\$31	\$3	\$8	\$50	\$29	\$12
Kingston 5	TN			\$35	\$3	\$11	\$51	\$33	\$13
Kingston 6	TN			\$35	\$3	\$13	\$51	\$33	\$13
Kingston 7	TN			\$35	\$3	\$11	\$51	\$33	\$13
Kingston 8	TN			\$35	\$3	\$12	\$51	\$33	\$13
Kingston 9	TN			\$35	\$3	\$13	\$51	\$33	\$13
		8			-	1		Total	\$11,8


Meeting the Consent decree will cost:

 \$3.9 Billion in Capital Costs

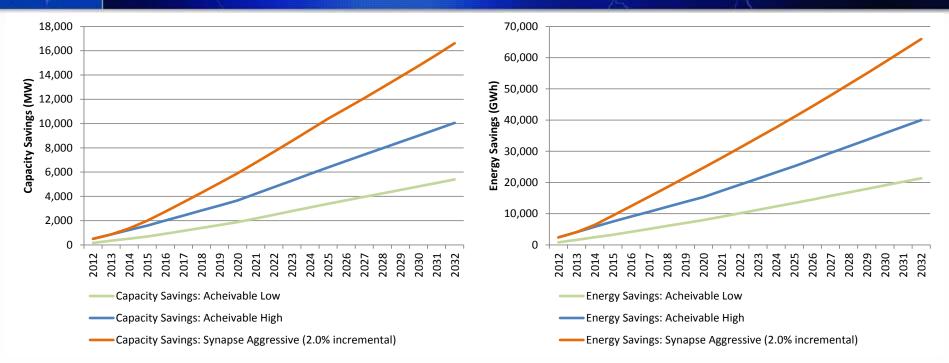

Meeting all EPA rules w/o CO2 price:

- \$11.8 Billion in Capital Costs
- \$24.6 Billion
 Present Value for
 Capital and New
 Operations &
 Maintenance
 Expenses


Consent Decree <u>Only</u>: Forward-Going Costs of Existing TVA Coal Units relative to Long-Term Market Costs

All Environmental Regs + \$0 CO2 price – 47% of the fleet is uneconomic

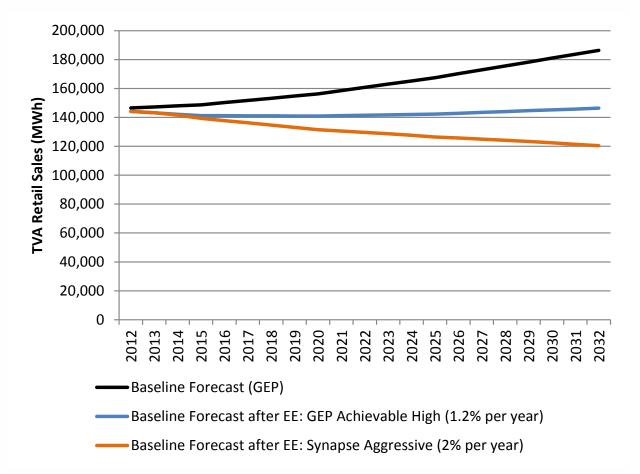
All Environmental Regs + \$21 CO2 price - A modest CO2 price renders almost the entire fleet uneconomic

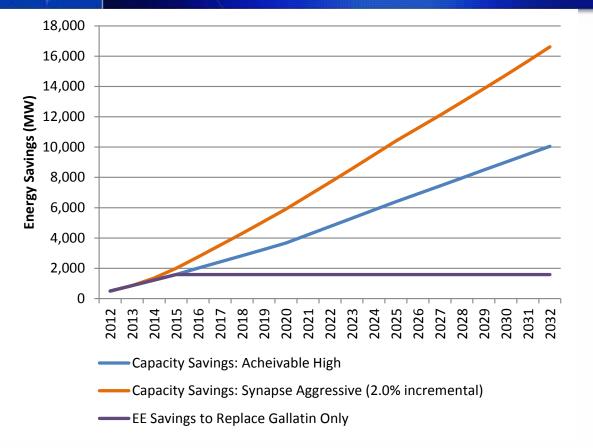

TVA 2011 IRP

- Extensive IRP process in mid-2011
- However, TVA 2011 IRP did not evaluate the economic merits of coal power retirements.
- TVA IRP did not optimize RE and EE resources.

Energy Efficiency for TVA

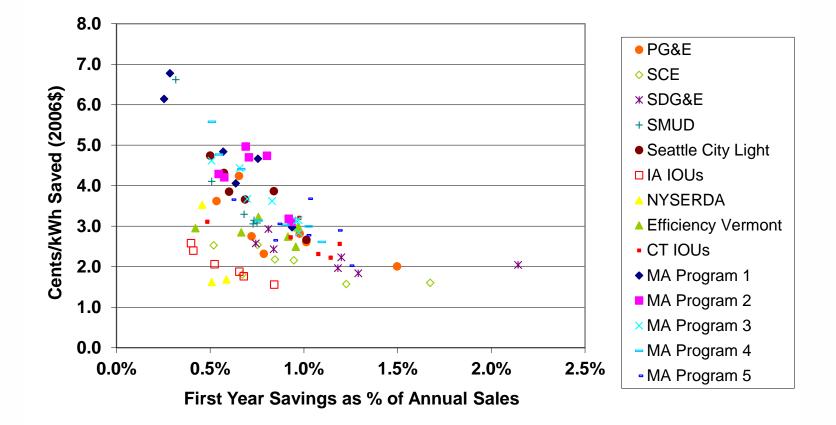
- GEP 2011 EE potential study found abundant cost-effective energy efficiency (EE) potential TVA territory
- TVA can promote EE aggressively to retire some of the largest coal plants, reduce costs to consumers, reduce pollutions, and save lives.


Efficiency can power TVA cleanly and quickly

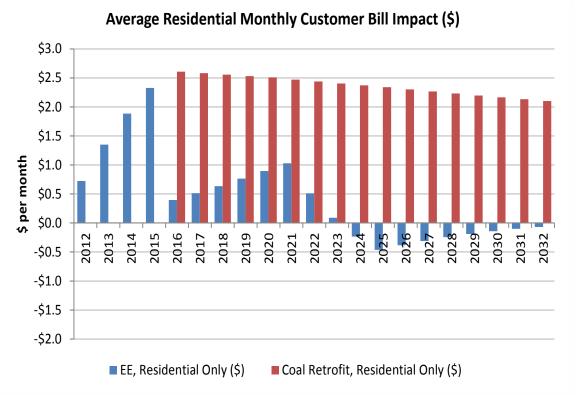

TVA's own study shows significant energy efficiency savings at a 1.2% annual savings rate (the "Achievable High" scenario). It is sufficient to replace 1,590 MW – or at least one coal power plant -- by 2015.

The Synapse Aggressive EE scenario represents current savings from leading states and utilities (2% incremental savings per year). <u>2% per year achieves capacity savings of 2,750 MW by 2016, enough to offset several coal units.</u>

Efficiency means no expensive retrofits and falling demand.

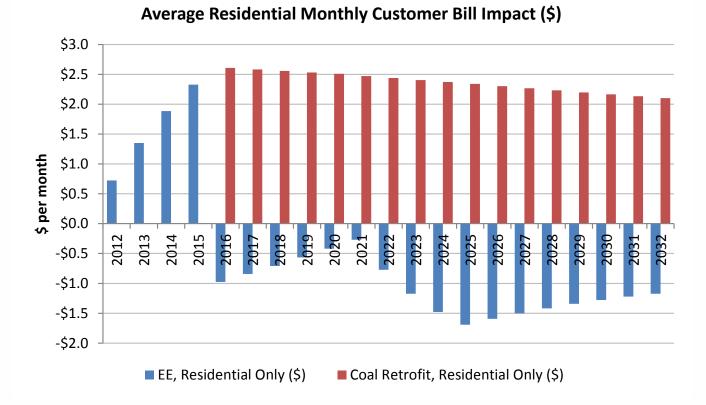


Efficiency is more cost-effective than retrofits – the Gallatin example.

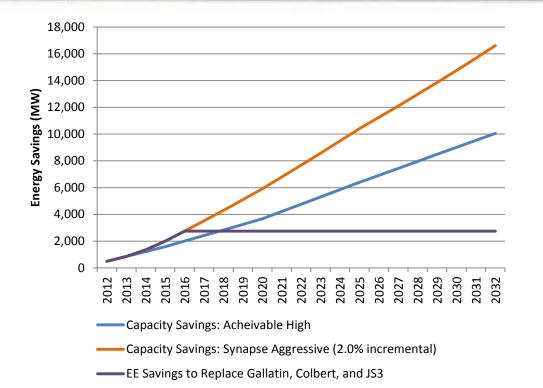

Present value (cost) of retrofitting and operating Gallatin 2015-2032 = \$5.7 billion (no CO2)= \$7.4 billion (\$21 CO2)Cost of obtaining EE sufficient to replace Gallatin to 2032Savings= \$2.7 - 4.4 billion

Cost of Saved Energy

Source: Synapse Energy Economics. 2008. Costs and Benefits of Electric Utility Energy Efficiency in Massachusetts


Moving beyond coal lowers your power bills – the Gallatin example.

Replacing just the Gallatin plant with EE knocks \$1.5 to \$3 per month off residential bills, starting in 2016.


Notes: Average TVA residential bill = \$130 in 2011 Calculation assumes that costs are spread evenly across rate classes

Bigger savings are possible as carbon regulation continues – the Gallatin example.

If a \$21 CO2 price is implemented, efficiency lowers bills still more, compared with running the Gallatin plant.

More efficiency means more avoided costs – Replacing 2,750 MW by 2016 saves billions over the next decades.

Replacing up to 2,750 MW by 2016 (with 2% annual savings) saves even more money:

Present value of retrofitting and operating coal plants 2015-2032

Present value of obtaining EE to replace coal plants to 2032

Savings

= \$12.6 billion (no CO2) = \$15.9 billion (\$21 CO2)

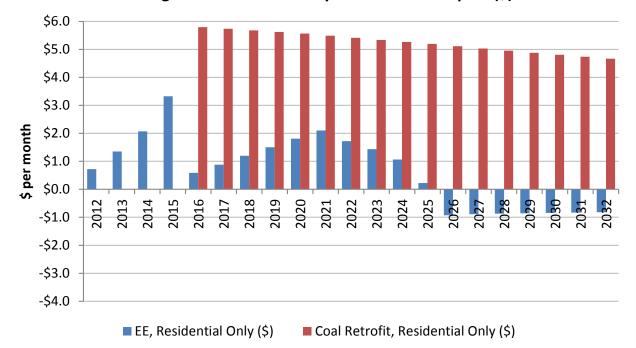
<u>= \$6.0 billion</u>

= \$6.6 – 9.9 billion

Conclusions

TVA's coal fleet is largely uneconomic.

If TVA can replace as much of it with energy efficiency as possible, it will save money, lower bills, and save lives.


It's time for TVA to lead.

Further Information

For further information, see our report "TVA Coal in Crisis -Using Energy Efficiency to Replace TVA's Highly Non-Economic Coal Units" available at <u>http://www.synapse-</u> <u>energy.com/Downloads/SynapseReport.2012-08.SC.TVA-</u> <u>Coal-in-Crisis.12-041.pdf</u>

Contact: Kenji Takahashi, Synapse Energy Economics, ktakahashi@synapse-energy.com

More efficiency means even lower bills...

Average Residential Monthly Customer Bill Impact (\$)

Replacing 2,750 MW (the equivalent of Gallatin, Colbert and John Sevier 3) with efficiency saves \$5 or more per month for residential consumers.

... and lower still with carbon costs factored in

Average Residential Monthly Customer Bill Impact (\$)

Replace 2,750 MW with efficiency, and see monthly bills fall by \$7 or more.